期刊文献+

基于改进ISODATA的海战场空间群形成研究

Research on Space-Group Formation on Sea Battlefield Based on Improved ISODATA
下载PDF
导出
摘要 海战场空间群是从实体层目标信息中提取兵力层态势信息的基础,针对现有聚类算法的不足和可获取目标信息的特点运用改进ISODATA算法探索空间群形成问题。首先选取特征矢量与聚类测度,然后从改善多密度目标分群和初始类心优选2个方面对ISODATA进行改进,最后将聚类结果进行辅助识别,从而完成空间群形成建模。经仿真分析,该模型采用的新算法较改进前在分群有效性、适用性和运算效率上都有明显提升,较好地满足了空间群形成的需要,并可对其他背景下的聚类分群提供借鉴。 The space-group on the sea battlefield is the foundation of that distilling the force level situation information from the object level target information. Aiming at the deficiency of existing cluster algorithm and the characteristic of obtainable target information,this article researches the problem of space-group formation using the improved ISODATA. Firsdy,character vector and cluster measure are selected,secondly ISODATA is improved from two aspects which include amending multi-density clustering and original cluster center preference,lastly the clustering result is identified by assistant information to accomplish the space-group formation modeling. Compared with existing method,the improved algorithm has evident advance on the clustering validity, applicability and operation efficiency by simulation analyzing. This model can satisfy the requirement of space-group formation,and use for reference for clus'tering under other background.
机构地区 海军潜艇学院
出处 《火力与指挥控制》 CSCD 北大核心 2013年第10期69-74,共6页 Fire Control & Command Control
基金 军队重点技术研究基金资助项目(20070102358)
关键词 改进ISODATA 空间群形成 密度划分 初始类心优选 improved ISODATA, space-group formation,density partition,original cluster centerpreference
分类号 E911 [军事]
  • 相关文献

参考文献3

二级参考文献11

  • 1郝维平,邸奇光,王纪证,张龙.未来战场信息环境研究[J].航天控制,2005,23(2):11-14. 被引量:2
  • 2邢喆,王泽民,伍岳.利用模糊聚类方法筛选GPS载波相位组合观测值[J].武汉大学学报(信息科学版),2006,31(1):23-26. 被引量:14
  • 3徐小岩主编.信息作战导论[M].北京:解放军出版社,2000.8.
  • 4Submarines and Information Operations[J].ADA382092,2000(5):34-36.
  • 5沈云春.信息战条件下潜艇作战指挥面临的问题及对策.海军学术研究,2004,(6):51-53.
  • 6陈明 吕登峰.复杂电磁环境下潜艇兵力战术运用的思考.海军学术研究,2007,(7):24-26.
  • 7Zhang Yong, Yang S, Wang Yuanyuan. LDBOD: a Novel Local Distribution Based Outlier Detector[J]. Pattern Recognition Letters, 2008,29(7): 967-976.
  • 8Krirgel H P, Schubert M, Zimek A. Angle-Based Outlier Detection in High-Dimensional Data [C]. KDD'08, Las Vegas, USA, 2008.
  • 9Haining R,Robert P. Spatial Data Analysis: Theory and Practice[M]. Cambridge: Cambridge University Press, 2003.
  • 10Ester M, Kriegel H P, Sunder J, et al. A Density- Based Algorithm for Discovering Clusters in Large Spatial Database with Noise[C]. The 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, 1996.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部