期刊文献+

基于改进遗传算法的确定范围内SVM参数选择

SVM Parameters Selection Based on Improved Genetic Algorithm Within Determined Range
下载PDF
导出
摘要 提出了在确定范围内采用改进遗传算法自动选择支持向量机(SVM)参数的方法。首先,通过分析SVM的参数取值与模型性能的关系,确定各参数的限定范围,然后,分析了遗传算法的不足,通过引入递阶编码、小生境共享和自适应交叉概率等技术对其进行改进,最后,以所确定的范围作为搜索区间,利用改进的遗传算法自动选择SVM参数。实验结果验证了该方法的有效性。 An automatic selection method of Support Vector Machine (SVM) parameters is proposed based on an improved Genetic Algorithm (GA) within the determined range. First,the limited range for each parameter is derived by analyzing the relation between SVM parameters value and model capability,and then the technologies including hierarchical encoding,niches share and adaptive crossover probability are introduced to overcome the shortcomings of standard GA. Finally,the determined range can be regarded as a search region of SVM parameters and the improved GA is used to automatically search the optimal parameter values of SVM. The experiments are given to illustrate the effectiveness of the method.
出处 《火力与指挥控制》 CSCD 北大核心 2013年第10期134-137,共4页 Fire Control & Command Control
关键词 遗传算法 支持向量机 递阶编码 共享函数 genetic algorithm, Support Vector Machine(SVM ), hierarchical encoding, share function
  • 相关文献

参考文献11

  • 1Vapnik V N. The Nature of Statistical Learning Theory [ M ]. New York: Springer-Verlag, 1999.
  • 2杜京义,侯媛彬.基于遗传算法的支持向量回归机参数选取[J].系统工程与电子技术,2006,28(9):1430-1433. 被引量:39
  • 3董春曦,饶鲜,杨绍全,徐松涛.支持向量机参数选择方法研究[J].系统工程与电子技术,2004,26(8):1117-1120. 被引量:65
  • 4Vladimir C, M Y Q. Practical Selection of SVM Parametem and Noise Estimation for SVM Regression [J]. Neural Net- works,2004,17( 1 ): 113-126.
  • 5Kwok J T, Tsang I W. Linear Dependency between and the Input Noise in Support Vector Regression[ J ]. IEEE Trans. on Neural Networks, 2003,14(3): 544-553.
  • 6Sch lkopf B, Smola A. Learning with Kernels: Support Vector Machines, Regularization, and Beyond [ M ]. Cam- bridge: MIT Press, 2002.
  • 7Mitchell M. An Introduction to Genetic Algorithms[M ]. Cam- bridge: MIT Press, 1999.
  • 8Lin W, Delgado-Frias J G, Gause D C, et al. A Hierarchi- cal Genetic Algorithm for the TSP[J ]. Mathematical Modeling and Scientic Computing, 1996(6 ): 217-225.
  • 9李明,孙晓燕,巩敦卫.一种自适应递阶遗传算法[J].中国矿业大学学报,2002,31(6):622-625. 被引量:7
  • 10Goldberg D E, Richardson J. Genetic Algorithms with Shar- ing for Multimodal Function Optimization [ C ]//Proceedings of the Second International Conference on Genetic Algo- rithms and Their Application,Lawrence Erlbaum Associ- ates, 1987:41-49.

二级参考文献17

  • 1Vapnik Vladimir N. The Nature of Statistical Learning Theory [M]. Springer-Verlag, New York, Inc, 2000.
  • 2Burges J C. A Tutorial on Support Vector Machines for Pattern Recognition[M]. Kluwer Academic Publishers, Boston, 1999.
  • 3Joachime T. Estimating the Generalization Performance of a SVM Efficiently[M]. Informatik LSV Ⅲ, University Dortmund, 2001.
  • 4董春曦 饶鲜 杨绍全.支持向量机推广能力估计方法综述[A].第一届全国人工智能基础学术会议,2002..
  • 5Lunts A, Brailovskiy V. Evaluation of Attributes Obtained in Statistical Decision Rules[J]. Enginering Cybernetics, 1967,3:98-109.
  • 6Murphy P M, Aha Irvine D W. CA: University of California,Department of Information and Computer Science [ EB/OL ].http://www. ics. uci. edu/~ mlearn/MLRepository. html, 1994.
  • 7SimonHaykin 叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..
  • 8Vladimir Cherkassky, Ma Yunqian. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks, 2004, 17:113-126.
  • 9Vapnik V. Statistical learning theory[M]. Wiley, 1998.
  • 10Kwok J T, Tsang I W. Linear dependency between and the input noise in-support vector regression[J]. IEEE Trans. on Neural Networks, 2003, 14(3) :544-553.

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部