期刊文献+

可变速率多元LDPC码高阶调制系统 被引量:3

Non-binary rate-compatible LDPC-coded High order modulation system
下载PDF
导出
摘要 由于无线信道的时变性及无线频谱资源的短缺,码率自适应技术及高频谱效率的高阶调制技术均为未来高速率无线通信发展的必然方向,本文提出了一种基于多元速率兼容LDPC(RC-LDPC)码的可变速率高阶编码调制方案。该方案基于符号级的多元LDPC码缩短和打孔算法,并与高阶映射联合优化设计,获得了比二元RCLDPC码方案优异的性能,实现了多元LDPC码率从1/3到5/6灵活变化,并且所有子码都可以共享母码的编译码器,因此相对于多元母码,基本不增加系统复杂度。仿真结果证明采用64-QAM调制时,本方案的误码率性能比二元码对应方案在各个码率分别有0.5到1.3dB的增益。 Due to the time-varying wireless channel and the lack of wireless spectrum resource,code-rate adaption technique and high order modulation scheme with high spectrum efficiency will be the most attractive candidates for high speed wireless communication in future.In this paper,a variable--rate high order modulation scheme based on non-binary ratecompatible low-density parity-check (RC-LDPC) codes was proposed.In this scheme,the symbol-wise shortening algorithm and puncturing algorithm for non-binary LDPC codes were provided,and the jointed design of high order mapping and nonbinary RC-LDPC codes were proposed,too.With these algorithms,some information bits or redundancy bits will be not transmitted over wireless channels; at the receiver,the partial code-words should be filled with some proper bits or probabilities.Finally,we can obtain a non-binary RC-LDPC-coded high order modulation scheme with the flexible code-rate range from 1/3 to 5/6.And all rate-compatible LDPC codes can be decoded by using the parity-check matrix of the mother code,so the complexity will not increase significantly.Finally,simulation results show that gains of 0.51-1.3dB are obtained over binary RC-LDPC-coded 64-QAM-modulation schemes.
出处 《信号处理》 CSCD 北大核心 2013年第10期1368-1375,共8页 Journal of Signal Processing
基金 国家自然科学基金(61302095 61201264 61372107) 华侨大学科研基金(12BS219 13Y0384 13BS101 11BS112)
关键词 多元LDPC码 速率兼容 高阶调制 non-binary low-density parity-check codes rate-compatible high order modulation
  • 相关文献

参考文献17

  • 1MacKay D. J. C. and Neal R. M. . Near Shannon limitperformance of low density parity check codes [ J] . Elec-tron. Lett.,1996, 32(18) : 1645-1646.
  • 2Sipser M. and Spielman D. A.. Expander codes [J].IEEE Trans. Inform. Theory, 1996’42( 11 ) :1710-1722.
  • 3Richardson T. J.,Shokrollahi M. A.,and Urbanke R.L. . Design of capacity-approaching irregular low-densityparity-check codes [ J]. IEEE Trans. Inform. Theory,2001, 47(2) :619-637.
  • 4Kou Y. , Lin S.,and Fossorier M. P. C. Low-densityparity-check codes based on finite geometries : A redis-covery and new results [J]. IEEE Trans. Inform. Theo-ry, 2001,47(7) :2711-2736.
  • 5李晓峰,冯大政,胡树楷.QC LDPC码低复杂度消环算法[J].信号处理,2013,29(2):262-267. 被引量:1
  • 6Chung S. -Y.,Fomey G. D.,Richardson T. J. , and Ur-banke R. On the design of low-density parity-check codeswithin 0.0045 dB of the shannon limit [ J ]. IEEE Com-mun. Lett.,2001, 5(2) :58-60.
  • 7Hu Xiao-yu and Eleftheriou E. Binary representation ofcycle Tanner-graph GF(^ ) codes [ C ]. IEEE Interna-tional Conference on Communications, Paris, France,Jun. 20-24 , 2004, 1; 528-532.
  • 8Huang Jie, Zhou Sheng-li and Willett P. Structure,prop-erty ,and design of nonbinary regular cycle codes [ J ].IEEE Transactions on Communications, 2010,58(4):1060-1071.
  • 9李丹,白宝明,孙蓉.多元LDPC码与二元LDPC码的性能比较[J].无线通信技术,2007,16(3):1-6. 被引量:10
  • 10Ha J. , Kim J. , McLaughlin S. W. Rate-compatible punc-turing of low-density parity-check codes [ J] . IEEE Trans-actions on Information Theory,2004,50( 11) ;2824-2836.

二级参考文献42

  • 1李丹,白宝明,孙蓉.多元LDPC码与二元LDPC码的性能比较[J].无线通信技术,2007,16(3):1-6. 被引量:10
  • 2Gallager R G. Low-density Parity-check Codes [J]. IRE Trans Inf Theory, 1962, 8(1): 21-28.
  • 3Kou Y, Lin S, Fossorier M P C. Low-density Parity-check Codes Based on Finite Geometries: a Rediscovery [ C]//IEEE ISIT'00 Proceedings. Sorrento: IEEE, 2000: 200.
  • 4Forney G D, Jr. Codes on Graphs: Normal Realizations [J]. IEEE Trans on Inform Theory, 2001, 13(2): 520-548.
  • 5Davey M C, MacKay D. Low Density Parity Check Codes Over GF(q) I J]. IEEE Communications Letters, 1998, 2(6): 165-167.
  • 6Lin Wei, Bai Baoming, Li Ying, et al. Design of Q-ary Irregular Repeat-accumulate Codes [ C]//IEEE AINA'09 Proceedings. Bradford: IEEE, 2009: 201-206.
  • 7Voicila A, Declercq D, Verdier F, et al. Low-complexity, Low-memory EMS Algorithm for Non-binary LDPC Codes [ C]//IEEE ICC'07. Glasgow: IEEE, 2007: 671-676.
  • 8Caire G, Kumar K R. Information Theoretic Foundations of Adaptive Coded Modulation[ J]. proceedings of the IEEE, 2007 (95) : 2274-2298.
  • 9周林 白宝明 王晶.基于CT-TCM的自适应编码调制技术.通信学报,2008,29(11):82-86.
  • 10Ha J, Kim J, McLaughlin S W. Rate-compatible Puncturing of Low-density Parity-check Codes [ J]. IEEE Trans on Information Theory, 2004, 50(11): 2824-2836.

共引文献12

同被引文献18

  • 1沈昌祥,张焕国,冯登国,曹珍富,黄继武.信息安全综述[J].中国科学(E辑),2007,37(2):129-150. 被引量:358
  • 2李丹,白宝明,孙蓉.多元LDPC码与二元LDPC码的性能比较[J].无线通信技术,2007,16(3):1-6. 被引量:10
  • 3Berrou C,Glavieux A,Thitimajshima P.Near Shannon limit error-correcting coding and decoding:turbo-codes [C]//ln Proc.of ICC',May 1993;1064-1070.
  • 4MacKay D J C,Neal R M.Near Shannon limit perform- ance of low density parity check codes[J].Electron.Lett.,1996,32(18):1645-1646.
  • 5Sipser M,Spielman D A.Expander codes[J].IEEE Trans.Inform.Theory,1996,42(11):1710-1722.
  • 6Davey M C,Mackay D J C.Low density parity check codes GF(q)[J].IEEE Commun.Letters,June 1998,2(6):165-167.
  • 7Lin S,Song S,Tai Y Y,et al.Algebraic Constructions of Nonbinary Quasi-Cyclic LDPC Codes[C]//In Proc.of 2006International Conference on Communications,Cir- cuits and Systems.IEEE,2006:1303-1308.
  • 8Masera G,Quaglio F,Vacca F.Implementation of a Flex- ible LDPC Decoder[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2007,54:542-546.
  • 9Zhou Lin,Bai Bao-ming,Xu Ming,et al.Design of Nonbinary Rate-Compatible LDPC Codes Utilizing Bit- Wise Shortening Method[J].IEEE Communications let- ters,2010,14(10):963-965.
  • 10Beomkyu Shin,Sang-Hyo Kim,Hosung Park,et al.New stopping criteria for iterative decoding of LDPC codes in H-ARQ systems[J].International Journal of Communica- tion Systems,2013,26(11):1475-1484.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部