期刊文献+

基于支撑向量机回归的接警量预测与比较 被引量:1

Based on support vector machine(SVM) regression algorithm called 110 quantity analysis and comparison
下载PDF
导出
摘要 本文围绕110接处警实战应用需求,重点讨论了支撑向量机回归模型,进行了数据探测和评估。对三种常用的回归算法(线性回归、神经网络回归和支撑向量机回归)在建模效果方面进行比较,得出了结论。 Around 110 JieChuJing practical application demand, this paper focuses on the support vector machine (SVM) regression model, the data detection and evaluation of three kinds of commonly used regression algorithm (linear regression neural network regression and support vector machine (SVM) regression) in the aspect of modeling effect were compared, the conclusion is obtained.
出处 《软件》 2013年第7期77-80,共4页 Software
关键词 支撑向量机 回归 模型 预测 support vector machine (SVM) regression model forecast
  • 相关文献

参考文献4

二级参考文献18

  • 1曾文华,马健.支持向量机增量学习的算法与应用[J].计算机集成制造系统-CIMS,2003,9(z1):144-148. 被引量:27
  • 2张学工.统计学习理论本质(原著:VapnikVN)[M].北京:清华大学出版社,2000:168—236.
  • 3Vapnik V N. An overview of statistical learning theory[J]. IEEE Trans on Neural Networks, 1999,10(5) :988-999.
  • 4Vapnik V N, I.evin E, Le Cun Y. Measuring the VC dimension of a learning machine[J]. Neural Computation, 1994,6 : 851-876.
  • 5Cortes C,Vapnik V N. Support vector networks[J]. Machine Learning, 1995,20(6) :273-297.
  • 6Capelle O, Vapnik V, Bouspuet O, Mukherjee S. Choosing Multiple Parameters for Support Vector Machines[J]. Machine Learning, 2002, 46(1) :131-159 .
  • 7[1]RATSABY J. Incremental learning with sample queries[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998, 20(8) :883-888.
  • 8[2]WANG E H C, KUH A. A smart algorithm for incremental learning[J]. International Joint Conference on Neural Net works, 1992,3:121 - 126.
  • 9[3]VAPNIK V. The nature of statistical learning theory[M]. New York: Springer- Verlag, 1995.
  • 10[4]CHRISTOPHER J,BURGES C. A tutorial on support vector machines for pattern recognition[M]. Boston: Kluwer Academic Publishers, 1998.

共引文献60

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部