期刊文献+

一维热传导方程爆破解的数值模拟 被引量:1

Numerical Simulation of Blowup Solutions for One-dimensional Heat Conduction Equation
下载PDF
导出
摘要 本文讨论半线性抛物方程u/t=Δu,x∈Ω ,t>0,在第二类边值条件下u/n=up,x∈Ω ,t>0解的有限时间爆破问题。从一维方程出发,主要考虑一维方程的数值解问题,以及分别利用Matlab的pdepe函数和有限差分进行数值模拟。 In this paper, the finite time blowup solutions of the semilinear parabolic equation (a)u/(a)t=△u,x∈Ω,t〉0, under the second boundary condition(a)u/(a)n=up,x=(a)Ω,t〉0 were mainly discussed. Using the methods of Matlab pdepe function and finite difference respectively, we study the numerical simulation of blowup solutions for one - dimensional heat equations.
作者 贾海峰
出处 《长春师范学院学报(自然科学版)》 2013年第5期8-12,共5页 Journal of Changchun Teachers College
基金 国家自然科学基金资助项目(10702065)
关键词 一维 热方程 爆破 pdepe 有限差分法 数值解 One - dimensional Heat equation Blowup Pdepe Finite - difference
  • 相关文献

参考文献14

  • 1H.A.Levine,L.E,Payne.Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porousmedium equation backward in time[J].J.Differential Equations,1974(16):319-334.
  • 2H.A.Levine,R.A,Smith.A potential well theory for the heat equation with a nonlinear boundary condition[J].Math.Meth-ods Appl.Sci.1987(9):127-136.
  • 3W.Walter.On existence and nonexistence in the large of solutions of parabolic differential equations with a nonlinear boundarycondition[J].Siam J.Math.Anal.,1975(6):85-90.
  • 4B.Hu,H.M.Yin.The profile near blowup time for solution of the heat equation with a nonlinear boundary condition[J].Transation.Amer.Math.Society,1994,346(1).
  • 5M.Fila,P.Quittner.The blowup rate for the heat equation with a nonlinear boundary condition[J].Math.Methods Appl.Sci.1991(14):197-205.
  • 6M.Fila,J.S.Guo.Complete blowup and incomplete quenching for the heat equation with a nonlinear boundary condition[J].Nolinear Analysis,2002(48):995-1002.
  • 7A,Friedman,B.McLeod.Blowup of positive solutions of semilinear heat equations[J].Indiana Univ.Math.J.1985(34):425-477.
  • 8Y.Giga,R.V.Kohn.Asymptotic self-similar blowup of semilinear heat equations [J].Comm.Pure Appl.Math.1985(38):297-319.
  • 9Characterizing blowup using similarity variables [J].Indiana Univ.Math.J.1987(36):425-447.
  • 10Nondegeneracy of blowup for semilinear heat equations[J].Comm.Pure Appl.Math.,1989(42):845-884.

同被引文献6

  • 1Polking,John.Albert,Bogges.Dave,Arnold.Differential Equations.Pren- ticeHall,2002.
  • 2Arnold,David.His matlab and LATEX expertise.
  • 3Cooper,Jeffery.Introduction to Partial Differential Equations with MATLAB.Birkhauser, 1998.
  • 4The Sauceman.His LATEX expertise.
  • 5Walter A. Strauss.Partial Differential Equations:An Introduction. John Wiley & Sons,1992.
  • 6H.A.Levine,L.E.Payne.Nonexistence theorems for the heat equ- ation with nonlinear boundary conditions and for the porous me- dium equation backward in time[J].J. Differential Equations,1974 (16):319-334.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部