期刊文献+

Debye-Hckel solution for steady electro-osmotic flow of micropolar fluid in cylindrical microcapillary

Debye-Hckel solution for steady electro-osmotic flow of micropolar fluid in cylindrical microcapillary
下载PDF
导出
摘要 Analytic expressions for speed, flux, microrotation, stress, and couple stress in a micropolar fluid exhibiting a steady, symmetric, and one-dimensional electro-osmotic flow in a uniform cylindrical microcapillary were derived under the constraint of the Debye-Hiickel approximation, which is applicable when the cross-sectional radius of the microcapillary exceeds the Debye length, provided that the zeta potential is sufficiently small in magnitude. Since the aciculate particles in a micropolar fluid can rotate without translation, micropolarity affects the fluid speed, fluid flux, and one of the two non-zero components of the stress tensor. The axial speed in a micropolar fluid intensifies when the radius increases. The stress tensor is confined to the region near the wall of the mi- crocapillary, while the couple stress tensor is uniform across the cross-section. Analytic expressions for speed, flux, microrotation, stress, and couple stress in a micropolar fluid exhibiting a steady, symmetric, and one-dimensional electro-osmotic flow in a uniform cylindrical microcapillary were derived under the constraint of the Debye-Hiickel approximation, which is applicable when the cross-sectional radius of the microcapillary exceeds the Debye length, provided that the zeta potential is sufficiently small in magnitude. Since the aciculate particles in a micropolar fluid can rotate without translation, micropolarity affects the fluid speed, fluid flux, and one of the two non-zero components of the stress tensor. The axial speed in a micropolar fluid intensifies when the radius increases. The stress tensor is confined to the region near the wall of the mi- crocapillary, while the couple stress tensor is uniform across the cross-section.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第11期1305-1326,共22页 应用数学和力学(英文版)
关键词 couple stress ELECTRO-OSMOSIS MICROCAPILLARY micropolar fluid microrota-tion steady flow couple stress, electro-osmosis, microcapillary, micropolar fluid, microrota-tion, steady flow
  • 相关文献

参考文献2

二级参考文献24

  • 1Culbertson C T, Jacobson S C, Ramsey J M. Dispersion sources for compact geometries on microchip[ J]. Analytical Chemistry, 1998,70(18) :3781-3789.
  • 2Paegel B M, Lester D H, Simpson P C, et al. Turn geometry for minimizing band broadening in microfabricated capillary electrophoresis channels[ J]. Analytical Chemistry, 2000,72(14): 3030-3037.
  • 3Molho J I, Herr A E, Mosier B P, et al. Optimization of turn geometries for microchip electrophoresis[J]. Analytical Chemistry ,2001,73(7): 1350-1360.
  • 4Qiao R, Aluru N R. Dispersion control in nano-channel systems by localized zeta-potential variations[ J ]. Sensors and Actuators A: Physical, 2003,104(3) :268-274.
  • 5Schwer C, Kenndler E. Electrophoresis in fused-silica capillaries-the influence of organic-solvents on the electroosmotic velocity and the zeta-potential[ J]. Analytical Chemistry, 1991,63( 17):1801-1807.
  • 6Moseley M A, Deterding L J, Tomer K B, et al. Determination of bioactive peptides using capillary zone electrophoresis mass-spectrometry[ J]. Analytical Chemistry, 1991,63(2): 114-120.
  • 7Johnson T J, Ross D, Gaitan M, et al. Laser modification of performed polymer microchannels: ap-plication to reduced band broadening around turns subject to electrokinetic flow[J ]. Analytical Chemistry, 2001,73(15): 3656-3661.
  • 8Hayes M A. Extension of external voltage control of electroosmosis to high-pH buffers[ J]. Analytical Chemistry, 1990,71(17) :3793-3798.
  • 9Chang C C and Yang R J 2004 J. Micromech. Microeng.14 550
  • 10Liu Y Z, Byoung J K and Hyung J S 2004 Inter. J. Heat and Fluid Flow 25 986

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部