期刊文献+

一种新的海水渗流模型及其数值算法

A New Mathematical Model and Numerical Simulation for Sea Water Intrusion into Coastal Aquifers
下载PDF
导出
摘要 反常扩散通常用于模拟物理、金融和水文等各种现象,整数阶扩散方程不能准确地模拟这类反常扩散过程.本文研究了溶质入侵地下水层的特征,建立了海水渗入地下水层的反常扩散模型,将整数阶的导数用分数阶导数来替换,利用差分离散建立此模型的数值算法,证明了算法的收敛性,并给出数值例子,通过计算机模拟表明算法的有效性. Anomalous diffusion has been applied to many problems in physics ,finance and hydrology. Integer differential equations cannot correctly simulate the anomalous diffusion phenomena. In this paper, the characteristic of solutes transport in groundwater is described. We give a new mathematical model for saltwater intrusion into coastal aquifers replacing the integeral derivative by a fractional derivative. We derive the numerical algorithm for the mathematical model by using difference discrete. Convergence of the algorithm is proved. Finally, numerical example is presented to show the effectiveness of this algorithm.
作者 陈秀华
出处 《南京师范大学学报(工程技术版)》 CAS 2013年第3期89-92,共4页 Journal of Nanjing Normal University(Engineering and Technology Edition)
基金 福建省教育厅科技项目(JA10284) 2010年福建省交通科技发展项目(201011)
关键词 反常扩散 数学模型 数值模拟 anomalous diffusion, mathematical model, numerical simulation
  • 相关文献

参考文献6

  • 1Huang F, Liu F. The time fractional diffusion equation and advection-dispersion equation [ J ]. ANZIAM J,2005,46:317-330.
  • 2Su N, Sander G, Liu F, et al. Similarity solution of Fokker-Planck equation with time- and scale-dependent dispersivity for solute transport in fractal porous media[ J ]. Applied Mathematical Modelling,2005,29:852-870.
  • 3Huang H,Liu F. The space-time fractional diffusion equation with Caputo derivatives[ J]. J Appl Math Computing,2005,19: 233 -245.
  • 4Huang H, Liu F. The fundamental solution of the space-time fractional adveetion equation [ J ]. J Appl Math Computing ,2005, 18:339-350.
  • 5Sun Z Z, Wu X N. A fully discrete difference scheme for a diffusion-wave system [ J ]. Applied Numerical Mathematic,2006, 9(4) :333-349.
  • 6胡健伟 汤怀民.微分方程数值解法[M].北京:科学出版社,1999..

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部