期刊文献+

利用有限元方法模拟力学拉伸试验——以钢纤维混凝土为例 被引量:1

Simulation of Tensile Test of the Steel Fiber Reinforced Concrete with the Finite Element Method
下载PDF
导出
摘要 力学试验是获取岩石等许多工程材料力学性能的主要方法之一。但是对某些特殊材料,由于影响其力学性能的因素众多,单纯通过试验来获取其力学性能,成本高,过程复杂。如工程抗震中目前普遍使用的钢纤维混凝土(SFRC),很难单纯通过力学试验来获取钢纤维的分布对其力学性能的影响。本文基于随机方法对钢纤维混凝土建立有限元模型,利用数值模拟的方法来估计钢纤维的分布和体积率对钢纤维混凝土拉伸性能的影响。通过与试验结果比较验证了其可行性,结果表明钢纤维的分布对钢纤维混凝土屈服前的力学性能影响较小,对屈服后的应力-应变特征影响较大。当钢纤维体积率从1%变化到2%,钢纤维混凝土的屈服强度与体积率大致为线性关系,强度随之增加。 Mechanical test is one of the main methods to obtain the mechanical properties of rocks and many engineering materials.Given many factors that affect the mechanical properties of some special materials,it is hard to get their mechanical properties only through the test because of high cost and complex process.Steel fiber reinforced concrete (SFRC) as a structural material has been used widely in many major constructions because of its good mechanical performance.However,it is difficult to evaluate the effect of steel fiber distribution on SFRC mechanical behavior with experiment.This paper constructed a model based on randomized method and solved the equation by finite element method,which was called randomized finite element method (RFEM).The results show that the steel fiber distribution has little influence on the pre-yield behavior of SFRC,but has a major impact on the post-yield response.From a change of 1% to 2 %,the volume fraction of steel fibers and tensile yield strength of SFRC represents approximately a linear relationship.
出处 《地震》 CSCD 北大核心 2013年第4期145-152,共8页 Earthquake
基金 国家自然科学基金(41204066) 中央级公益性科研院所基本科研业务项目(DZLXJK201205) 深部探测技术与实验研究专项(SinoProbe-08-01 SinoProbe-07)联合资助
关键词 力学拉伸试验 钢纤维混凝土(SFRC) 有限元方法 屈服强度 Steel fiber reinforced concrete (SFRC) Randomized finite element method (RFEM) Yield tensile strength
  • 相关文献

参考文献16

  • 1Khaloo A R, Kim N. Influence of concrete and fiber characteristics on behavior of steel fiber-rein- forced concrete under direct shear[J]. ACI Structural Journal, 1997, 94(6) :592-600.
  • 2Holschemacher K, Mueller T, Ribakov Y. Effect of steel fibres on mechanical properties of high-strength concrete[J]. Materials and Design, 2010, 31: 2604-2615.
  • 3Olivito R S, Zuccarello F A. An experimental study on the tensile strength of steel-fiber-reinforced concrete[J]. Composites: PartB, 2010, 41: 246-255.
  • 4Rossi E. Mechanical Behaviour of Metal-fibre Reinforced Concretes[J]. Cement and Concrete Com- posites, 1992, 14: 3-16.
  • 5Wang Z L, Wu J, Wang J G. Experimental and numerical analysis on effect of fibre aspect ratio on mechanical properties of SRFC[J]. Construction and Building Materials, 2010, 24: 559-565.
  • 6Song P S, Hwang S. Mechanical properties of high-strength steel fiber-reinforced eoncrete[J]. Con struction and Building Materials, 2004, 18: 669-673.
  • 7Chen W F, Saleeb A F. Constitutive equations for engineering materials[M]. New York: Elsevier, 1994.
  • 8Camps G, Turatsinze A, Sellier A, et al. Steel-fibre-reinforcement and hydration coupled effects on concrete tensile behaviour[J]. Engineering Fracture Mechanics, 2008, 75 : 5 207-5 216.
  • 9Teng T L, Chu Y A, Chang F A, et al. Calculating the elastic moduli of steel-fiber reinforced con- crete using a dedicated empirical formula[J]. Computational Materials Science, 2004, 31: 337-346.
  • 10Atis C D, Karahan O. Properties of steel fiber reinforced fly ash concrete[J]. Construction and Building Materials, 2009, 23: 392-399.

同被引文献24

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部