期刊文献+

RG-1炸药的热分解特性

Thermal Decomposition Characteristics of RG-1 Explosive
下载PDF
导出
摘要 根据升温速率分别为5、10、20K/min的DSC和TG-DTG曲线,研究了S-2黏结剂、PETN和RG-1炸药的热分解过程。分别用Coats-Redfern法、Ozawa法和NL-INT法获得S-2黏结剂、PETN和RG-1炸药的热分解动力学参数和机理函数,进而计算PETN和RG-1炸药在特征温度的热力学参数。结果表明,RG-1炸药的DSC曲线上呈现一个吸热熔化峰和一个放热分解峰,130℃以下的热稳定性良好。RG-1炸药的热分解机理属随机成核和随后生长,活化能、指前因子和机理函数分别为156.02kJ/mol、1017.29s和f(α)=43(1-α)[-ln(1-α)]14。RG-1炸药在放热分解峰温的活化焓、活化熵和活化自由能分别为152.17kJ/mol、74.04J·K-1·mol-1和117.89kJ/mol。 The thermal decomposition processes of S-2 binder,PETN and RG-1 explosives were studied by the DSC and TG-DTG curves at heating rates of 5,10 and 20 K · min-1,respectively.The thermal decomposition kinetic parameters and the mechanism function of S-2 binder,PETN and RG-1 explosives were obtained by Coats-Redfern method,Ozawa's method and NL-INT method respectively,and the thermodynamic parameters of PETN and RG-1 explosives on the characteristic temperature were calculated.The results show that DSC curve of the RG-1 explosive reveals an endothermic melting peak and an exothermic decomposition peak,it has better thermal stability below 130℃.The thermal decomposition mechanism of RG-1 explosive is classified as random nucleation and growth mechanism,the activation energy,pre-exponential factor and mechanism function are 156.02 kJ · mol-1,1017.29s-1and f(α) =4/3 (1-α) [-ln(1-α)] 1/4,respectively.The enthalpy of activation,entropy of activation and free energy of activation for RG-1 explosive on the temperature of exothermic decomposition peak are 152.17 kJ · mo1-1,74.04J · K-1 · mol-1 and 117.89kJ · mol-1.
出处 《火炸药学报》 EI CAS CSCD 北大核心 2013年第5期35-40,共6页 Chinese Journal of Explosives & Propellants
关键词 物理化学 RG-1炸药 TG-DTG曲线 动力学参数 热力学参数 physical chemistry RG-1 explosive TG-DTG curves kinetic parameter thermodynamic parameter
  • 相关文献

参考文献11

二级参考文献38

  • 1汪波,刘玉存,李敏.HMX粒度对其撞击感度的影响研究[J].华北工学院学报,2005,26(1):35-37. 被引量:19
  • 2吕勇,罗运军,张继光,等.GAP-HTPB-GAP嵌段共聚物的合成与表征[C] //火炸药学术研讨会论文集.北京:北京理工大学,2008.
  • 3Kawamoto A M,Oliveira J I,Dutra R S,et al.Synthesis and characterization of energetic thermoplastic elastomers for propellant formulations[J].Journal of Aerospace Technology and Management,2009,1 (1):35-42.
  • 4Byoung S M.Characterization of the plasticized GAP/PEG and GAP/PCL block copolyurethane binder matrices and its propellants[J].Propellants,Explosives,Pyrotechnics,2008,33(2):131-138.
  • 5Mathew S,Manu S K,Varghese T L.Thermomechanical and morphological characteristics of crosslinked GAP and GAP-HTPB networks with different diisocyanates[J].Propellants,Explosives,Pyrotechnics,2008,33(2):146-152.
  • 6Cossu C,Heuzey M C,Lussier L S,Dubois C.Early development of a biodegradable energetic elastomer[J].Journal of Applied Polymer Science,2011,119:3645-3657.
  • 7Talawar M B,Sivabalan R,Mukundan T,et al.Environmentally compatible next generation green energetic materials (GEMs)[J].Journal of Hazardous Materials,2009,161(2-3):589-607.
  • 8Paraskos,Dewey A,Edwards M A,One pot procedure for poly (glycidyl nitrate) end modification:US,7714078[P].2010.
  • 9Archibald T G,Manser G E.Neopentyl difluoroamino compounds for use in energetic formulations:US,5789617[P].1998.
  • 10Thomas M K,Stefan M S.Investigation of nitrogenrich energetic polymers based on alkylbridged bis-(1-methyl-tetrazolylhydrazines)[J].Journal of Polymer Science:Part A:Polymer Chemistry,2010,48:122-127.

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部