期刊文献+

BA无标度网络的双向演化模型 被引量:4

The two-way evolution model of a BA scale-free network
下载PDF
导出
摘要 在基本BA无标度网络模型的基础上,提出了双向演化模型,其演化机制中既有新边增加又有旧边删除.理论证明此改进模型的度分布服从幂律分布且幂指数为1<γ<3,拓宽了模型的应用范围.数值仿真验证了理论分析的正确性.而且与基本BA模型相比,双向演化模型生成网络的平均路径长度较小,聚类系数较大,较符合实际网络. Based on the BA scale-free network model, the two-way evolution model of a BA scale-free network is given, which considers both new edges increasing and old edges removing. Theoretical deduc- tion suggests that the model obeys power distribution and the power exponent is between 1 and 3, which broaden the range of application. With three essential statistical values' computer simulations of the algo- rithm, the characteristics of the real network are emerged in the model including small world characteris- tics and small average path length, by contrast of the basic BA model.
出处 《暨南大学学报(自然科学与医学版)》 CAS CSCD 北大核心 2013年第5期475-478,共4页 Journal of Jinan University(Natural Science & Medicine Edition)
基金 国家自然科学基金项目(10671076 11071089) 广东省自然科学基金项目(10151063201000005) 中央高校基本科研业务费专项基金项目(21609602)
关键词 BA模型 双向演化 无标度 反择优 BA model two-way evolving scale-free reversely preferential attachment
  • 相关文献

参考文献8

  • 1AMARAL L A N, OTI'INO J M. Complex networks [ J ]. The European Physical Journal B ,2004,38 (2) :147 -162.
  • 2ALBERT R, BARABASI A L. Scale-free networks: A decade and beyond[ J]. Science,2009,325:412-413.
  • 3BIANCONI G, BARBASI A L. Bose-Einstein condensa- tion in complex networks [ J ]. Phys Rev E, 2000, 85 (24) : 5234 - 5237.
  • 4LI X, JIN Y Y, CHEN G. Complexity and synchroniza- tion of the World Trade Web [ J ]. Physica A, 2003, 328:287 -296.
  • 5李增扬,韩秀萍,陆君安,何克清.内部演化的BA无标度网络模型[J].复杂系统与复杂性科学,2005,2(2):1-6. 被引量:13
  • 6汪小帆,李翔,陈关荣.网络科学导论[M].北京:高等教育出版社,2012.
  • 7SHUDONG JIN, AZER BESTAVROS. Small-world charac- teristics of internet topologies and implications on multicast scaling[ J ]. Computer Networks ,2006,50(5 ) :648 - 666.
  • 8李广,赵道致.供应链网络的无标度特性研究[J].工业工程,2012,15(1):28-32. 被引量:13

二级参考文献30

  • 1郭进利.供应链型网络中双幂律分布模型[J].物理学报,2006,55(8):3916-3921. 被引量:31
  • 2王克强,王俊红.无标度企业组织网络特征及其演化模型[J].微计算机信息,2006,22(08X):210-212. 被引量:5
  • 3[1]Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999,286:509 -512.
  • 4[2]Barabási A L,Albert R,Jeong H. Mean-field theory for scale-free random networks[J]. Physica A ,1999 ,272 :173 - 187.
  • 5[3]Barabási A L, Albert R,Jeong H, et al. Power-law distribution of the world wide web[J]. Science,2000,287:2115.
  • 6[4]Albert R, Barabási A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002,74 (1): 47 -98.
  • 7[5]Krapivsky P L, Redner S,Leyvraz F. Connectivity of growing random networks[J]. Phys Rev Lett, 2000,85:4 629 -4 632.
  • 8[6]Dorogovstsev S N, Mendes J F F. Scaling properties of scale-free evolving networks: continuous approach [J]. Phys Rev E,2001,63:056125.
  • 9[7]Dorogovstsev S N,Mendes J F F. Evolution of reference networks with aging[J]. Phys Rev E, 2000,62:1 842 -1 847.
  • 10[8]Bianconi G, Barabasi A L. Topology of evolving networks:local events and universality[ J]. Phys Rev Lett,2000(85): 5 234 -5 237.

共引文献90

同被引文献30

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部