期刊文献+

零调整分位数回归模型在车辆保险索赔额中的研究与应用

Research and Application of Zero-adjusted Quantile Regression Model for Estimating Claim Size in Vehicles Insures
原文传递
导出
摘要 车辆保险产品的定价一般会考虑保单持有人的索赔概率和期望索赔额等两个因素,零调整逆高斯回归模型作为解决这类问题的一个有力工具,由于变量分布的限定,从而具有一定的局限性.针对该问题,本文基于零调整逆高斯回归模型和分位数回归模型的思想,提出零调整分位数回归模型,并结合实际数据进行了拟合分析.与零调整逆高斯回归模型拟合的结果比较表明,零调整分位数回归模型可以作为研究车辆保险中索赔额的一个有力工具. Claim probability and claim size are the factors for the proper pricing in vehicles insures.Though the zero-adjusted inverse Gaussian regression model is one of important statistical tools for the problem,it exists some drawbacks because of the choose about the distribution of the claim size variable.This paper,based on the ideas of the zero-adjusted inverse Gaussian regression model and the quantile regression model,first suggests the zero-adjusted quantile regression model and uses it to fit the actual motor insurance data.Through the analysis and comparing with the zero-adjusted inverse Gaussian regression model,the conclusion is that he zero-adjusted quantile regression model is appropriate for the claim size in vehicles insures.
作者 郭念国 徐昕
出处 《数学的实践与认识》 CSCD 北大核心 2013年第20期42-49,共8页 Mathematics in Practice and Theory
基金 河南省教育厅科学技术研究重点项目(12A110006) 河南工业学高层次人才基金项目(2011BS041)
关键词 索赔额 零调整逆高斯回归模型 零调整分位数回归模型 claim size zero-adjusted inverse gaussian regression model zero-adjusted quantile regression model
  • 相关文献

参考文献15

  • 1Jorgensen B, Souza M C P de. Fitting Tweedie's compound Poisson model to insurance claims data[J]. Scandinavian Actuarial Journal, 1994(1): 69-93.
  • 2Smyth G K, Jorgensen B. Fitting tweedie' s compound poisson model to insurance claims data: dispersion modeling[J]. Actuarial Studies in Non-life insurance (ASTIN) Bulletin, 2002, 32(1): 143- 157.
  • 3Heller G, Stasinopoulos M, Rigby R A. The zero-adjusted inverse Gaussian distribution as a model for insurance claims[C]/ / Proceedings of the International Workshop on Statistical Modelling, Cal?way, Ireland: eds Hinde J, Einbeck J, Newell J, 2006: 226-233.
  • 4Bortoluzzo A B D P, Claro MAL, Caetano R. Artes. Estimating total claim size in the auto insur?ance industry: a comparison between Tweedie and zero-adjusted inverse gaussian distribution[J]. BAR, Curitiba, 2011, 8(1): 37-47.
  • 5Jong P, Heller G Z. Generalized Linear Models for Insurance Data[M]. Cambridge: Cambridge University Press, 2008.
  • 6Rigby R A, Stasinopoulos D M. Generalized additive models for location, scale and shape (with discussion)[J]. Appl Statist, 2005, 54(3): 507-554.
  • 7Koenker R, Bassett G. Regression quantiles[J]. Econometrica, 1978, 46(1): 33-50.
  • 8陈建宝,丁军军.分位数回归技术综述[J].统计与信息论坛,2008,23(3):89-96. 被引量:141
  • 9Buchinsky M. Recent advances in quantile regression models: a practical guideline for empirical research[J]. The Journal of Human Resources, 1998, 33(1): 88-126.
  • 10Yu K, Zudi Lu, Julian Stander. Quantile regression: application and current research areas[J]. Journal of the Royal Statistical Society, 2003, 52(3): 330-350.

二级参考文献54

  • 1Taylor J. A quantile regression approach to qstimating the distribution of multi-period returns [J ]. Journal of Derivatives, 1999 (Fall) : 64 - 78.
  • 2Chemozhukov V, Umantsev L. Conditional value at risk: aspects of modelling and estimation [J ]. Empirical Economics, 2001, 3: 271-292.
  • 3Chen M Y,Chen J E. Statistical inferences in quantile regression models: primal and dual aspects [R]. Manuscript, 2001.
  • 4Georios K, Leonidas Z. Conditional autoregression quantiles: estimating market risk for major stock markets [C]. The Second International Symposiunl "Advances in Financial Forecasting", 2005.
  • 5Koenker R, Hallock K F. Quantile regression: an introduction[J]. Journal of Economic Perspectives, 2001,15:143- 156.
  • 6Koenker R. Quantile regression[ M]. Cambridge: Cambridge University Press, 2005, London.
  • 7Chen C, Wei Y. Computation issues on quantile regression [J]. Sankhya, 2005, 67:399-417.
  • 8Yu K, Lu Z, Stander J. Quantile regression: applications and current research area [J]. The Statistician, 2003,52:331 - 350.
  • 9Koenker R, Bassett G W. Regression quantiles [J]. Econometrica, 1978, 46:33 -50.
  • 10Koenker R, Machado A F. Goodness of fit and related inference processes for quantile regression [J]. JASA, 1999, 94:1296 - 1310.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部