期刊文献+

关于图的点可区别边染色的一个猜想

A Conjecture of Vertex-Distinguishing Edge Coloring of Graphs
原文传递
导出
摘要 图G的一个k-正常边染色f被称为点可区别的是指任意两个不同点的点及其关联边所染色集合不同,所用最少染色数被称为G的点可区别边色数,张忠辅教授提出一猜想即对每一个正整数k≥3,总存在一个最大度为△(G)=k≥3的图G,,满足图G一定有一个子图H,且母图的点可区别的边色数小于子图的.本文证明了对于最大度小于9时,此猜想正确. A proper edge coloring of a simple graph G is called vertex distinguishing if for any two distinct vertices u and v inG,the set of colors assigned to the edges incident to u differs from the set of colors incident to v.The minimal number of colors required for a vertex distinguishing edge coloring of G is denoted by χ'_(vd)(G).Professor Zhang Zhongfu presented a Conjecture:For k =3,4,…,there always exists a graph G such that Δ(G) = k,and there is a subgraph H of G,it usable χ'_(vd)(H) χ'_(vd)(G).In this paper,we proved the conjecture is true for Δ9.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第20期130-133,共4页 Mathematics in Practice and Theory
基金 国家自然科学基金(11261046 11061024 11261043) 宁夏自然科学基金(NZ1154) 宁夏大学自然科学基金(ndzr10-7)
关键词 子图 边染色 图的点可区别边染色 图的点可区别边色数 Subgraphs edge coloring vertex-distinguishing edge coloring vertex-distinguishing edge chromatic number
  • 相关文献

参考文献8

  • 1Aigner M, Triesch E. Irregular assignments of trees and forests[J]. SIAM J Discrete Math, 1990(3): 439-449.
  • 2Harary F. Conditional Colorability in Craphs, in: Graph and Applications[M]. Proc. First Colorado Symp, Graph Theory, John Wiley Sonic Inc, New York, 1985.
  • 3Favaron 0, Li H, Schelp R H. Strong edge coloring of graphs[J]. Discrete Mathematices, 1996, 159(1-3): 103-110.
  • 4Burris A C, and Schelp R H. Vertex-distinguishing Proper Edge-colorings[J]. J of Graph Theory, 1997, 26(2): 73-82.
  • 5Zhongfu Zhang et al. Some notes of vertex distinguishing edge coloring of graphs[R]. Report of science, Lanzhou Jiaotong University, 2009(3): 1-18.
  • 6王治文,朱恩强,文飞,李敬文.关于图的点可区别边染色猜想的一点注[J].数学的实践与认识,2010,40(2):223-226. 被引量:4
  • 7Balister P N, Riordan ° M, and R H. Schelp, Vertex-distinguishing edge colorings of graphs[J]. J of Graph Theory, 2003(42): 95-109.
  • 8Wittmann P. Vertex-distinguishing edge-colorings of 2-regular graphs[J]. Discrete Mathematics, 1997(79): 265-277.

二级参考文献9

  • 1Aigner M and Triesch E. Irregular assignments of trees and forests[J]. SIAM J Discrete Math, 1990(3): 439-449.
  • 2Harary F. Conditional Colorability in Craphs, in: Graph and Applications[C]//Proc First Colorado Symp, Graph Theory, John Wiley Sonic Inc, New York, 1985.
  • 3Favaron O, H Li and Schelp R H. Strong edge coloring of graphs[J]. Discrete Mathematices, 1996, 159(1-3): 103-110.
  • 4Burris A C and Sehelp R H. Vertex-distinguishing proper edge-colorings[J]. J of Graph Theory, 1997, 26(2): 73-82.
  • 5Bazgan C, Harkat-Benhamdine A, LI H, et al. On the vertex-distinguishing proper edge-coloring of graph[J]. J of Combin Theory Ser B, 1999, 75: 288-301.
  • 6Balister P N, Bollobas B, Schelp R H. Vertex-distinguishing coloring of graphs with △(G) = 2[J]. Discrete Mathematics, 2002, 252(2): 17-29.
  • 7Balister P N, Riordan O M and Schelp R H. Vertex-distinguishing edge colorings of graphs[J]. J of Graph Theory, 2003, 42: 95-109.
  • 8Wittmann P. Vertex-distinguishing edge-colorings of 2-regular graphs[J]. Discrete Mathematics, 1997, 79: 265-277.
  • 9Zhongfu Zhang et al. Some notes of vertex distinguishing edge coloring of graphs[R]. Report of science, Lanzhou Jiaotong University, 2009(3): 1-18.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部