摘要
对任意正整数n,设{c_n}表示Smarandache F五次方数列,即c_n=n^5.而F.Smarandache五次方阶数列{z_n}定义为最小的正整数z_n,使得c_n^(z_n)≡1(modc_(n+1)).本文的主要目的是利用初等方法研究数列z_n的计算问题,并给出了z_n的具体表示形式.从而证明了两个结论:A.数列z_n中除了第一项外,其余项都是偶数.B.在数列z_n中存在无限多个完全四次方幂.文章的最后就一般的p次方阶数列(其中p为素数),给出了相应的结论.
For any positive integer n,let {cn} be the Smarandache F 5-th number sequence cn = n5.The Smarandache F 5-th order sequence is given by z_n:z_n is the smallest positive integer solution of the congruence equation cn(Zn) = l(modc(n+1)).The main purpose of this paper is using the elementary method to given an exact expression for zn,then prove that two conclusions:A.All terms except the first term in sequence zn are even and B.There are infinitely many complete forth power numbers in zn.Finally,we give a general conclusion for any odd prime p,the p-th power order sequence.
出处
《数学的实践与认识》
CSCD
北大核心
2013年第20期213-216,共4页
Mathematics in Practice and Theory
基金
国家自然科学基金(11071194)
陕西省教育厅科学计划项目(12JK871)
关键词
五次方阶数列
同余性质
p次方阶数列
The 5-th order sequence
congruence
the p-th order sequence