期刊文献+

一类带有非线性传染率βI(1+vI^(k-1))S的SEIR传染病模型的全局动力学行为 被引量:1

The Dynamics for an SEIR Epidemic Model with Vertical Transmission and Impulsive Vaccinations
原文传递
导出
摘要 通过引入非线性传染率βI(1+vI^(k-1))S和脉冲免疫接种,对一个具有垂直传染和潜伏期的SEIR时滞传染病模型进行动力学分析.运用离散动力系统中的频闪映射,得到了该系统中无病周期解的存在性,并讨论了无病周期解的全局吸引性.进一步,对系统的永久持续生存进行了分析. In this paper,we assume that the incidence rate is the nonlinear function of the form βI(1 + vI^(k-1))S,and the susceptible is vaccinated at the fixed moments.Therefore,an SEIR epidemic disease model,which is described by the impulsive differential equations,is established,the exsitence and the global attractivity of the infection-free periodic solution are obtained Further,the permanence of the system is studied.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第20期291-298,共8页 Mathematics in Practice and Theory
基金 教育部科学技术研究重点项目(210030) 山西省自然科学基金(2013011002-3)
关键词 脉冲免疫接种 垂直传染 潜伏期 全局吸引 持久性 pulse vaccination vertical transmission latent period global attractivity permanence.
  • 相关文献

参考文献12

  • 1孟新柱,陈兰荪,宋治涛.一类新的含有垂直传染与脉冲免疫的时滞SEIR传染病模型的全局动力学行为[J].应用数学和力学,2007,28(9):1123-1134. 被引量:28
  • 2Michael Y Li, Gaef John R, Wang L C. et al. Global dynamics of an SEIR model with varying total population size[J]. Mathematical Biosciences, 1999, 160(2): .191-213.
  • 3Michael Y, Li Hall Smith, Wang L C. Global dynamics of an SEIR model with vertical transmis?sion[J]. SIAM Journal on Applied Mathematics, 2001, 62(1): 58-69.
  • 4Li G H, Jin Z. Global stability of an SEIR epidemic model with infectious force in latent,infected and immune period[J]. Chaos, solitons and Fractals, 2005, 25(5):1177-1184.
  • 5Fine P M. Vectors and vertical transmission: an epidemiologic perspective[J]. Annals of the New York Academy of Sciences, 1975, 266(11): 173-194.
  • 6Busenberg S N, Cooke K L, Pozio M A. Analysis of a model of a vertically transmitted disease[J]. Journal of Mathematical Biology, 1983, 17(3): 305-329.
  • 7赵文才,孟新柱.具有垂直传染的SIR脉冲预防接种模型[J].应用数学,2009,22(3):676-682. 被引量:7
  • 8Van den Driessche P, Watmough J. Epidemic solutions and endemic cataxtrophes[J]. Fields Institute Communications, 2003, 36(1): 247-257.
  • 9赵文才,孟新柱,张子叶.一类具有传染率βI(1+vI)S的脉冲免疫接种SIRS模型[J].数学的实践与认识,2009,39(12):80-85. 被引量:7
  • 10Al-Showaikh F N M, Twizell E H. One-dimensional measles dynamics[J]. Applied Mathematics and Computation, 2004, 152(1): 169-194.

二级参考文献38

  • 1Roberts M G, Kao R R. The dynamics of an infectious disease in a population with birth pulse[J]. Mathematical Biosciences, 1998,149 (1) :23-36.
  • 2Stone L, Shulgin B, Agur Z. Theoretical examination of the pulse vaccination policy in the SIR epidemic model [J]. Mathematical Computer Modeling, 2000,31 (4-5) :207-215.
  • 3D'Onofrio Alberto. Stability properties of pulse vaccination strategy in SEIR epidemic model[J]. Mathematical Biosciences, 2002,179 (1) : 57-72.
  • 4Vanden Driessche P, Watmough J. A simple SIS epidemic model with a backward hifurcation[J]. Journal of Mathematical Biology, 2000,40(6) : 525-540.
  • 5Vanden Driessche P, Watmough J. Epidemic solutions and endemic catastrophes [J]. Fields Institute Communications, 2003,36 (1) : 247-257.
  • 6Alexander ME, Moghadas SM. Periodicity in an epidemic model with a generalized non-linear incidence[J]. Mathematical Biosciences, 2004,189 (1) : 75-96.
  • 7孟新柱,陈兰荪,宋治涛.一类新的含有垂直传染与脉冲免疫的时滞SEIR传染病模型的全局动力学行为[J].应用数学和力学,2007,28(9):1123-1134. 被引量:28
  • 8Michael Y Li,Gaef John R,WANG Lian-cheng,et al.Global dynamics of an SEIR model with varying total population size[J].Mathematical Biosciences,1999,160(2):191-213.
  • 9Michael Y Li,Hall Smith,Wang Lian-cheng.Global dynamics of an SEIR epidemic model with vertical transmission[ J].SIAM Journal on Applied Mathematics,2001,62(1):58-69.
  • 10Al-Showaikh F N M,Twizell E H.One-dimensional measles dynamics[ J].Applied Mathematics and Computation,2004,152(1):169-194.

共引文献36

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部