摘要
通过引入非线性传染率βI(1+vI^(k-1))S和脉冲免疫接种,对一个具有垂直传染和潜伏期的SEIR时滞传染病模型进行动力学分析.运用离散动力系统中的频闪映射,得到了该系统中无病周期解的存在性,并讨论了无病周期解的全局吸引性.进一步,对系统的永久持续生存进行了分析.
In this paper,we assume that the incidence rate is the nonlinear function of the form βI(1 + vI^(k-1))S,and the susceptible is vaccinated at the fixed moments.Therefore,an SEIR epidemic disease model,which is described by the impulsive differential equations,is established,the exsitence and the global attractivity of the infection-free periodic solution are obtained Further,the permanence of the system is studied.
出处
《数学的实践与认识》
CSCD
北大核心
2013年第20期291-298,共8页
Mathematics in Practice and Theory
基金
教育部科学技术研究重点项目(210030)
山西省自然科学基金(2013011002-3)
关键词
脉冲免疫接种
垂直传染
潜伏期
全局吸引
持久性
pulse vaccination
vertical transmission
latent period
global attractivity
permanence.