期刊文献+

融合内容和链接的网络结构发现概率模型综述 被引量:2

Survey of Probabilistic Models Combining Content and Link for Network Structure Detection
下载PDF
导出
摘要 随着社会媒体的发展,许多在线网络产生大量内容,发现其潜在的结构便于人们了解网络的功能,进行更深层次的分析和预测.社区和主题是网络结构发现的两个重要依据,其分别利用网络链接和内容建模,但链接的稀疏和内容的不相关导致发现难以解释的社区和不准确的主题.融合内容和链接的概率模型成为解决此问题的主流方法,按目标不同将其分为主题发现、主题社区发现和社区-主题发现模型,分析典型模型的设计背景、基本原理及求解方法,并通过定性比较和实验分析探索其存在的问题,最后预测未来融合模型的可能研究方向. With the development of social media, many online networks generate a lot of contents. Discovering their latent structures can help us understand their functions, analyze and predict them deeply. Community and topic are two important bases for structure exploring, which respectively makes use of network's links and contents to model. But the results from community detection are unin-telligibly due to the sparse links, and the ones from topic identification are inaccuracy because of the irrelevant contents. In order to resolve these problems, the probabilistic models combining content and link become prevalent, which are classified as topic identifica-tion models, topic community detection models and community-topic detection models. The article analyzes each classical model's designing background, keystone and solving method, and explores their existing problems through the qualitative comparisons and ex-periment analysis. In the end the research progress about the combining models is predicted.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第11期2524-2528,共5页 Journal of Chinese Computer Systems
基金 中央高校基本科研业务费专项资金(2012YJS027)资助 北京市自然科学基金项目(4112046)资助 河北省科技技术厅项目(11213584)资助 河北省自然科学基金项目(F2008000204)资助
关键词 内容网络 主题模型 社区发现 社区-主题分布 text-augmented network topic model community detection community-topic distribution
  • 相关文献

参考文献24

  • 1Fortunato Santo. Community detection in graphs [J] Physics Re- ports,2010,486 (3-5) :75-174.
  • 2Hofmann Thomas. Probabilistic latent semantic indexing [ C ]. Pro- ceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 1999: 50-57.
  • 3Blei David-M, Ng Andrew-Y, Jordan Michael-I. Latent dirichlet al-location [ J ]. The Journal of Machine Learning Research, 2003,3 ( 1 ) :993-1022.
  • 4Cohn Dvaid,Chang Huan. Learning to probabilistically identify au- thoritative documents [ C]. Proceedings of the 17th International Conference on Machine Learning ,2000 : 167-174.
  • 5Erosheva Elena, Fienberg Stephen, Lafferty John. Mixed-member- ship models of scientific publications [ C ]. Proceedings of the Na- tional Academy of Sciences of the United States of America,2004 : 5220-5227.
  • 6Yang Tian-bao, Jin Rong, Chi Yun, et al. Combining link and con- tent for community detection: a discriminative approach [ C ]. The 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining ,2009:927-936.
  • 7Snijders Tom-A B, Nowicki Kizysztof. Estimation and prediction for stochastic blockmodels for graphs with latent block structure [ J]. Journal of Classification, 1997,14 ( 1 ) :75-100.
  • 8Airoldi Edoardo-M, Blei David-M, Fienberg Stephen-E, et al. Mixed membership stochastic blockmodels [J]. The Journal of Machine Learning Research,2008,9( 1 ) :1981-2014.
  • 9Cohn David, Hofmann Thomas. The missing link-a probabilistic model of document content and hypertext connectivity [ C ]. Ad- vances in Neural Information Processing Systems,2000:430-436.
  • 10Nallapati Ramesh, Ahmed Ramesh, Xing Eric-P, et al. Joint latent topic models for text and citations [ C ]. The 14th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,2008:542- 550.

同被引文献10

引证文献2

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部