期刊文献+

一种考虑地图分布信息的分层路径搜索算法 被引量:1

A Hierarchical Pathfinding Algorithm Based on Map Distribution Information
下载PDF
导出
摘要 目前存在大量的路径搜索算法,但大多数如传统的A*,Dijkstra等算法没有考虑地图中障碍物的分布信息,造成不必要的存储和时间耗费.实际上,搜索空间的分布在很大程度上影响着算法的性能,因此提出一种结合障碍物分布信息和抽象图思想的分层路径搜索算法CDHPA*.该算法首先依据障碍物的分布将地图划分为不均等的子区域,划分区域的数目由可调阈值确定;然后将子区域边界上的非障碍点作为抽象节点来构成完整的抽象图.根据障碍分布,抽象节点之间的最短路径采用曼哈顿距离或自底向上融合算法来计算;最后在抽象图上找到抽象路径并进行细化,得到实际路径.CDHPA*在同一幅地图上进行多次寻路时仅需一次预处理,在线寻路相比同类方法 M-A*、HPA*更快,并且得出的路径为最优路径. Most of the present pathfinding algorithms, such as traditional A * and Dijkstra algorithm, did not consider the distribution information of obstacles in the map. That may cause unnecessary memory and time cost. In fact, the distribution information of the search space will greatly influence the performance of these algorithms. In this paper, we propose a new hierarchical pathfinding algo- rithm called CDHPA * , which considers the obstacle distribution in the generation of abstract graph. Firstly, the given map is divided into unequal sub-regions based on the obstacle distribution, where the number of sub-regions can be determined by predefined thresh-old that can be adjusted. Secondly, the free boundary nodes on the sub-regions are connected as abstract nodes to form a complete ab-stract graph. The shortest path between each pair of abstract nodes is calculated by Manhattan distance or bottom-up fusion algorithm depending on the density of obstacles. Finally, find an abstract path on the generated abstract graph and then refine the abstract path to the actual path. CDHPA * only needs one preprocess for multiple-task pathfinding in the same map. Compared with some typical al- gorithms such as M-A * and HPA * . CDHPA * is faster in on-line searching and the path is optimal.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第11期2607-2611,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60903088 61170040)资助 河北省百名优秀人才支持计划项目(CPRC002)资助
关键词 路径搜索 地图分布 抽象图 自底向上 细化路径 最优路径 path finding map' s distribution abstract map bottom-up fusion path refinement optimal path
  • 相关文献

参考文献13

  • 1Lu Yi-biao, Huo Xiao-ming, Tsiotras P. Beamlet-like data pro- cessing for accelerated path-planning using multiscalc information of the environment[ C]. In: Proceeding of 49th IEEE Conference on Decision Control, Atlanta, GA: 2010: 3808-3813.
  • 2Struyf A, Hubert M. Clustering in an object-oriented environment [ J ]. Journal of Statistical Software, 1996,1 (4) : 1-30. (agens).
  • 3Botea A, Muller M, Schaeffer J, et al. Near-optimal hierarchical pathfinding [ J ]. Journal of Game Development, 2004, I ( I ) :7-28.
  • 4Kanungo T, Mount D M, Netanyahu N S, et al. An efficient k- means clustering algorithm: analysis and implementation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7) : 881-892.
  • 5Li Yan, Chen Cai, Li Wen-hang, et al. KM-A * : a pathfinding algorithm for computer games based on A * and k-means clustering [C]. In: Proceeding of The 3rd International Conference on Com- putational Intelligence and Industrial Application, Wuhan, China, 2010 : 291-294.
  • 6Dijkstra E. A note on two problems in connexion with graphs[ J]. Numcrischc Mathematik, 1959,1 ( 1 ) :269-271.
  • 7Rabin S. AI game programming wisdom [ M ]. Beijing: Tsinghua University Press, 2005.
  • 8Hanan Samet. The quadtrees and related hierarchical data structures [J]. ACM Computing Surveys, 1984,16(2) :187-260.
  • 9Chen D Z, Szczerba R J, J J Urhan Jr. Planning conditional shor- test paths through an unknown environment: a framed-quadtree ap- proach: C]. In: Proceedings of the IEEE/RSJ International Con- ference on Intelligent Robots and System Human Interaction and Cooperation, Albuquerque, USA: 1995: 33-38.
  • 10Yahja A, Stentz A, Singh S, et al. Framed-quadtree path planning for mobile robots operating in sparse environments [ C ]. In: Pro- ceedings of the IEEE International Conference on Robotics and Au- tomation, Leuven, Belgium, 1998:650-655.

二级参考文献7

共引文献29

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部