期刊文献+

高等植物光系统Ⅱ大量捕光天线与量子点之间的定向连接及共振能量传递

Site-Selective Chelation and Excitation Energy Transfer between the Higher Plant Major Light-Harvesting Complexes and Quantum Dots
原文传递
导出
摘要 高等植物光系统Ⅱ大量捕光天线(light-harvesting complexes of photosystem Ⅱ,LHCⅡ)能与有机或无机材料连接,构建仿生的捕捉光能的新型材料。将量子点(quantum dot,QD)与LHCⅡ定向连接,构建共振能量传递体系,得到一系列不同摩尔比的QD-LHCⅡ杂合复合物(QD与LHCⅡ的摩尔比分别为1∶64、1∶32、1∶16、1∶12、1∶8、1∶4、1∶2.7、1∶2和1∶1.6)。光谱结果显示,随着摩尔比的增大,越来越多QD的激发能传递给LHCⅡ,并在1∶2.7时达到饱和。而无组氨酸标签的天然LHCⅡ与QD共孵育后,LHCⅡ和QD的荧光发射并没有显著变化。以上结果说明,本研究实现了定向连接后QD到LHCⅡ的显著共振能量传递,而定向连接对于这种共振能量传递是必要条件。 The major light-harvesting complexes of photosystem II (LHCII) have been linked to many organic or inorganic materials to construct bio-inspired new hybrid materials. In this study, the authors reported a hybrid complex of recombinant LHCII and water-soluble quantum dots (QD) linked by nickel-nitriloacetic acid (NTA.Ni) with a series of molar ratio between LHCII and QD (1:64, 1:32, 1 : 16, 1 : 12, 1:8, 1:4, 1 : 2.7, 1 : 2, 1 : 1.6) on the QD and histidine tag on the LHCII. The spectroscopic results showed that the fluorescence at 680 nm from LHCII increased when more QD molecules were put into the hybrid system. The enhancement reached the maximum and saturated when the molar ratio between LHCII and QD was 2.7 : 1. The fluorescence spectra results could be explained by resonance energy transfer mechanism from QD to LHCII. Moreover, no obvious energy transfer was observed between native LHCII and QD mixture and this highlighted the necessity of linkage for such energy transfer.
出处 《生物物理学报》 CAS CSCD 北大核心 2013年第7期496-505,共10页 Acta Biophysica Sinica
基金 "973"计划项目(2011CBA00904 2011CBA00905) 国家自然科学基金项目(31070212 30800069)~~
关键词 光系统Ⅱ大量捕光天线 量子点 共振能量传递 Light-harvesting complexes of photosystem II Quantum dots Resonance energy transfer
  • 相关文献

参考文献28

  • 1Green BR, Durnford DG. The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Biol, 1996, 47(1): 685-714.
  • 2Horton P, Ruban AV, Waiters RG. Regulation of light harvesting in green plants. Annu Rev Plant Biol, 1996, 47(1): 655-684.
  • 3Paulsen H, Rumler U, Rudiger W. Reconstitution of pigment-containing complexes from light-harvesting chlorophyll-a/b-binding protein overexpressed in Escherichia- coli. Planta, 1990, 181(2): 204-211.
  • 4Yang CH, Horn R, Paulsen H. The light-harvesting chlorophyll a/b complex can be reconstituted In vitro from its completely unfolded apoprotein. Biochemistry, 2003, 42(15): 4527-4533.
  • 5Paulsen H, Finkenzeller B, Kuhlein N. Pigments induce folding of light-harvesting chlorophyll alpha/beta-binding protein. Eur J Biochem, 1993, 215(3): 809-816.
  • 6Gundlach K, Werwie M, Wiegand S, Paulsen H. Filling the "green gap" of the major light-harvesting chlorophyll a/b complex by covalent attachment of Rhodamine Red. Biochim Biophys Acta, 2009, 1787(12): 1499-1504.
  • 7Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271(5251): 933-937.
  • 8Smith AM, Nie SM. Semiconductor nanocrystals: Structure, properties, and band gap engineering. Accounts Chem Res, 2010, 43(2): 190-200.
  • 9Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, Tran PT, Anderson GP. Avidin: A natural bridge for quantum dot-antibody conjugates. J Am Chem Soc, 2002, 124(22): 6378-6382.
  • 10Wiliard DM, Carillo LL, Jung J, Van OA. CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay. Nano Lett, 2001, 1(9): 469-474.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部