期刊文献+

超细ZnFe_2O_4纳米晶与蛋白质的相互作用

Ultrafine ZnFe_2O_4 Nanocrystals Interacting with Proteins
下载PDF
导出
摘要 水热法制备了超细ZnFe2O4纳米晶,并通过高分辨透射电镜(HRTEM)、XRD和EDX技术对其进行了表征。以牛血清白蛋白(Bovine Serum Albumin,BSA)和牛血红蛋白(Hemoglobin)为模式蛋白,研究了纳米晶在不同pH条件下对蛋白质分子的吸附及其与ζ电势的关系。通过动态光散射(Dynamic Light Scattering,DLS)和傅立叶变换红外光谱(Fourier Transform Infrared,FTIR)技术分别研究了纳米晶吸附蛋白后流体力学直径的变化以及蛋白质构象的变化。结果表明,ZnFe2O4纳米晶对牛血红蛋白的吸附符合静电吸附的规律,而对BSA的吸附则不符合静电吸附的规律。纳米晶吸附牛血红蛋白后主要以单体和三聚体的形式存在,仅存在少量的团聚体,而吸附BSA后完全以团聚体的形式存在。FTIR光谱则显示纳米晶对牛血红蛋白构象的影响大于对BSA构象的影响。在合适的pH条件下,纳米晶对BSA及牛血红蛋白的吸附容量均超过380 mg·g-1,有望应用于蛋白质的高效分离。 Uhrafine ZnFe2O4 nanocrystals were prepared by hydrothermal method and characterized by HRTEM, XRD and EDX techniques respectively. Protein adsorption properties and their correlations to potentials between nanocrystals and protein molecules were investigated under different pH conditions using bovine serum albumin (BSA) and hemoglobin as model proteins. The hydrodynamic size of bare and protein loaded nanocrystals as well as protein conformation changes induced by nanocrystals were respectively studied by dynamic light scattering (DLS) and Fourier transform infrared (FTIR) spectroscopy techniques. Results show that adsorption between nanocrystals and hemoglobin obeys the law of electrostatistic interaction, whereas BSA adsorption behavior is not agreed with such law. After hemoglobin loading, most of nanocrystal-protein systems suspend as monomers and trimers apart from a few aggregates, whereas only aggregates exist after BSA adsorbing onto nanocrystals. FTIR spectroscopy revealed that Hemoglobin suffers more conformational c hanges than that of BSA. In addition, highly protein adsorption capacities exceeding 380 mg .g-1 at appropriate pH potential applications of nanocrystals in protein separation. conditions imply the
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2013年第11期2375-2381,共7页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.51172085)资助项目
关键词 ZnFe2O4纳米晶 BSA 牛血红蛋白 相互作用 ZnFe2O4 nanocrystal bovine serum albumin (BSA) hemoglobin interactions
  • 相关文献

参考文献46

  • 1Mahmoudi M, Lynch I,Ejtehadi M R, et al. Chem. Rev.,2011,111:5610-5637.
  • 2Nel A E, Mdler L, Velegol D,et al. Nat. Mater. 2009,8:543-557?.
  • 3Ge CC,DuJ F, Zhao L, et al. PNAS’ 2011,108:16968-16973.
  • 4Hu W B, Peng C, Lli M, et al ACS Nano, 2011,5:3693-3700.
  • 5Sun S G, Ma M H,Qiu N, et al. Colloids. Surf. B Biointerfaces,2011,88:246-253.
  • 6DU Chong-Lei(杜崇磊),DU Wei(杜伟),WANG Bing(汪冰),et al. Fenxi Huaxue 2010,38(6):902-908.
  • 7ZHAO Zi-Lai(赵紫来),BIAN Zheng-Yim(卞征云),CHENLang-Xing (陈朗星),et al. Huaxue Jinzhan,2006,18(10):1288-1297.
  • 8HUANG Shan-Sheng(黄杉生),YIN Yue-Fen(殷月芬),WANGKe-Min (王柯敏),et al. Gaodeng Xuexioo Huaxue Xuebao, 2004,25(12):2238-2241.
  • 9HUANG Tian-Tian(黄天天),FU Yan(付雁),ZHANG Jin-Li(张金利),et al. Huaxue Jinzhan,2012,24 (8):1610-1622.
  • 10ZHANGHuai(张怀),ZHANG Yun-Huai(张云怀),LI Jing(李静),Huaxue Jinzhan, 2008,20:253-259.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部