期刊文献+

核酸碱基自组装膜表面电子转移性质研究 被引量:1

Study on Electron Transfer Across Nucleobases Terminated Surface Assembly
下载PDF
导出
摘要 巯基丙酸(MPA)、Mg2+以及含不同碱基的核苷酸(NTMP)(鸟苷酸GMP、腺苷酸AMP、尿苷酸UMP、胞苷酸CMP)逐步吸附到金电极上,制备末端为核酸碱基的组装膜,利用循环伏安(CV)、计时安培(CA)以及电化学交流阻抗技术(EIS)进行表征。结果表明,电子传递速率遵循以下顺序逐渐降低:GMP/Mg2+/MPA/Au>AMP/Mg2+/MPA/Au>UMP/Mg2+/MPA/Au>CMP/Mg2+/MPA/Au,量子化学计算多层膜组合体Mg-NTMP的能级差(ΔEgap=ELUMO-EHOMO)以一定的顺序增加:ΔEMg-GMP(0.89 eV)<ΔEMg-AMP(1.40 eV)<ΔEMg-UMP(1.57 eV)<ΔEMg-CMP(1.64 eV)。这说明末端为核酸碱基的多层组装膜表面的电子转移过程中,组合体Mg-NTMP的能级差ΔEgap决定电子穿越核酸碱基的速率。 3-Mercaptopropionic acid (MPA), Mg2+ and nucleotide monophosphate (NTMP) (including guanosine, adenosine, cytidine, uridine-5'-monophosphate, and abbreviations were GMP, AMP, CMP, UMP respectively) were adsorbed onto Au substrates stepwise to form nucleobases terminated surface. Electron transfer (ET) process across the NTMP/Mg2+/MPA/Au muhilayer assembly was studied and the ET kinetics were determined using electrochemical methods including cyclic vohammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The experimental results obtained from electro- chemistry showed that the rate of ET kinetics decreased in the order: GMP/MgE+/MPA/Au〉AMP/Mg2+/ MPA/Au 〉 UMP/MgE+/MPA/Au 〉 CMP/Mg2+/MPA/Au. And the calculated energy gaps ( ΔEgap = ELUMO -- EHOMO) of their corresponding Mg-NTMP complexes motif increased in the order:ΔEMg-GMP (0. 89 eV ) 〈 ΔEMg-AMP( 1.40 eV) 〈ΔEMg-UUp( 1.57 eV) 〈ΔEMg-cMp( 1.64 eV), which suggested that eomplexation of Mg with the NTMP, and their corresponding AEgap may play important role in their ET process across the nucleobases terminated muhilayer assembly.
机构地区 聊城大学化学系
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2013年第5期687-692,共6页 Chinese Journal of Analytical Chemistry
基金 国家自然科学基金(20875042) 山东省"泰山学者"工程资助
关键词 核酸碱基 电子转移 多层组装 Nucleobases Electron Transfer Multilayer Assembly
  • 相关文献

参考文献17

  • 1Ohshiro T, Umezawa Y. PNAS, 2006, 103(1) : 10 -14.
  • 2Huang S, Chang S, He J, Zhang P, Liang F, Tuchband M, Li S, Lindsay S. J. Phys. Chem. C, 2010, 114(48) : 20443 -20448.
  • 3He J, Lin L, Zhang P, Lee M, Sankey O F, Lindsay S. Nanotechnology, 2009, 20(7) : 075102.
  • 4Ji S, Guo Q, Yue Q, Wang L, Wang H, Zhao J, Dong R, Liu J, Jia J. Biosens. Bioelectron. , 2011, 26(5) : 2067 -2073.
  • 5Xu X, Bard A J. J. Am. Chem. Soc. ,1995, 117(9) : 2627 -2631.
  • 6Messner C B, Hofer T S, Randolf B R, Rode B M. Phys. Chem. Chem. Phys. , 2011, 13( 1 ) : 224 -229.
  • 7Park S, Lee K-S, Bozoklu G, Cai W, Nguyen S T, Ruoff R S. ACS Nano, 2008, 2(3) : 572 -578.
  • 8Kmetko J, Datta A, Evmenenko G, Dutta P. J. Phys. Chem. B, 2001, 105(44) : 10818 -10825.
  • 9Sigel H. Chem. Soc. Rev. , 1993, 22255 -22267.
  • 10Massoud S S, Sigel H. Inorg. Chem. , 1988, 27 (8) : 1447 -1453.

同被引文献21

  • 1ANAGNOSTOPOULOS C, BOURMPOPOULOU A, MILIADIS G. Development and validation of a dispersive solid phase extraction liquid chromatography mass spectrometry method with electrospray lionization for the determination of multiclass pesticides and metabolites in meat and milk[J]. Anal Lett, 2013, 46(16): 2526-2541.
  • 2SONG X Y, SHI Y P, CHEN J. Carbon nanotubes-reinforced hollow fibre solid-phase microextraction coupled with high per formance liquid chromatography for the determination of carbamate pesticedes in apples[J]. Food Chem, 2013, 139(1-4): 246-252.
  • 3ANSARI S A, HUSAIN Q. Potential applications of enzymes immoblilized on/in nano materials: A review[J]. Biotech Adv, 2011, 30(3): 512-523.
  • 4JEYAPRAGASAM T, SARASWATHI R. Electrochemical biosensing of carbofuran based on acetylcholinesterase immobilized onto iron oxide-chitosan nanocomposite[J]. Sensors and Actuators B: Chemical, 2014, 191: 681-687.
  • 5DUTTA R R, PUZARI P. Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode[J]. Biosensors and Bioelectronics, 2014, 52: 166-172.
  • 6SADEGHI R, KARIMI-MALEH H, BAHARI A, et al. A novel biosensor based on ZnO nanoparticle/1, 3-dipropylimidazolium bromide ionic liquid-modified carbon paste electrode for square-wave voltammetric determination of epinephrine[J]. Phys Chem Liq, 2013, 51(6): 704-714.
  • 7EKABUTR P, CHAILAPAKUL O, SUPAPHOL P. Modification of disposable screen-printed carbon electrode surfaces with conductive electrospun nanofibers for biosensor applications[J]. J Appl Poly Sci, 2013, 130(6): 3885-3893.
  • 8MEHRA N K, MISHRA V, JAIN N K. A review of ligand tethered surface engineered carbon nanotubes[J]. Biomaterials, 2014, 35(4): 1267-1283.
  • 9WANG Jun, LIN Yuehe. Functionalized carbon nanotubes and nanofibers for biosensing applications[J]. TrAC Trends in Analytical Chemistry, 2008, 27(7): 619-626.
  • 10YAN J X, GUAN H N, YU J, et al. Acetylcholinesterase biosensor based on assembly of multiwall carbon nanotubes onto liposome bioreactors for detection of organophosphates pesticides[J]. Pestic Biochem Physiol, 2013, 105(3): 197-202.

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部