期刊文献+

情境对分数和小数影响的ERP研究 被引量:2

An ERP Study on the Processing of Common and Decimal Fractions Affected by Contexts
下载PDF
导出
摘要 本研究采用数量比较的分类范式测定了14名大学生完成任务时的事件相关电位(ERPs)。实验设置了单纯和混合两种情境以考察情境是否对分数和小数有不同的影响,探讨两种符号数字是否表现出特异性的加工。行为数据显示:分数受情境影响显著,而小数不受情境影响。电生理结果显示:在分数条件中,N1、P2和P2p的波幅及N2的潜伏期都受情境影响,而在小数条件中,只有N2的波幅和潜伏期受情境影响。这些结果表明分数和小数的特异性加工主要源于知觉辨别,符号意义的提取,数量大小表征和分类反应关联阶段的差异。 Event-related potentials (ERPs) were measured in the brains of 14 normal young adults carrying out a magnitude comparison task. Our experiment included a simple context consisting exclusively of common fractions or decimal fractions, and a mixed context with both symbols interspersed. The aim of the present study was to examine the critical distinction between the processing of common fractions versus that of decimal fractions by comparing the context effect of the two symbols. The results showed that: Context had an effect on error rate for common fractions but not for decimal fractions. Our electrophysiological data reflected symbol-specific processing in N1, P2p, P2 and N2. Context did affect N1, P2p and P2 amplitude, and N2 latency for common fractions. Only N2 amplitude and latency were affected by context for decimal fractions. Our results indicated that differences in perceptual identification, extraction of numeral symbolic meaning, numerical magnitude representation and category-response associations may be the main source of the specific processing differences between common and decimal fraction symbols.
出处 《心理研究》 2013年第3期29-38,共10页 Psychological Research
关键词 分数和小数 特异性加工 数量比较的分类范式 事件相关电位 common and decimal fractions specific processing numerical magnitude comparison in classification event-related brain potentials (ERPs)
  • 相关文献

参考文献42

  • 1Brousseau G, Brousseau N, Warfield V. Rationals and decimals as required in the school curriculum Part 2: From rationals to decimals. Journal of Mathematical Behavior, 2007, 26(4): 281-300.
  • 2Ni Y, Zhou Y. Teaching and learning fraction and ra- tional numbers: The origins and implications of whole number bias. Educational Psychology, 2005, 40(1): 27- 52.
  • 3Huang T H, Liu Y C, Shiu C Y. Construction of an online learning system for decimal numbers through the use of cognitive conflict strategy. Computers & Educa- tion, 2008, 50(1): 61-76.
  • 4Hecht S, Vagi K, Torgensen J. Fraction skills and pro- portional reasoning. In: D. B. Berch & M. Mazzocco (Eds.), Why is math so hard for some children. Balti- more: Paul H. Brookes Publishing Co, 2007, 121-132.
  • 5Smith C L, Solomon G E A, Carey S. Never getting to zero: Elementary school students' understanding of the infinite divisibility of number and matter. Cognitive Psychology, 2005, 51(2): 101-140.
  • 6Bonato M, Fabbri S, Umilt6 C, et al. The mental rep- resentation of numerical fractions: Real or integer? Journal of Experimental Psychology: Human Perception and Performance, 2007, 33(6): 1410-1419.
  • 7Kallai A V, Tzelgov T. A generalized fraction: An en- tity smaller than one on the mental number line. Jour- nal of Experimental Psychology: Human Perception and Performance, 2009, 35(6): 1845-1864.
  • 8Meert G, Gregoire J, Noel M P. Rational numbers: Componential vs. holistic representation of fractions in a magnitude comparison task. Quarterly Journal of Ex- perimental Psychology, 2009, 62(8): 1598-1616.
  • 9Meert G, Gregoire J, Noel M P. Comparing the magni- tude of two fractions with common components: Which representations are used by 10- and 12-year-olds? Journal of Experimental Child Psychology, 2010, 107 (3): 244-259.
  • 10Sophian C, Garyantes D, Chang C. When three is less than two: Early developments in children's understand- ing of fractional quantities. Developmental Psychology, 1997, 33(5): 731-744.

二级参考文献18

  • 1张梅玲,刘静和,王宪钿.关于儿童对部份与整体关系认知发展的实验研究——5~10岁儿童分数认识的发展[J].心理科学通讯,1982,5(4):37-45. 被引量:2
  • 2[1]Albright T D, Kandel E R, Posner M I. Cognitive neuroscience. Current Opinion in Neurobiology 2000, 10: 612~624
  • 3[2]Behrmann M, Haimson C et al. The cognitive neuroscience of visual attention. Current Opinion in Neurobiology, 1999, 9: 158~163
  • 4[3]Mangun G R, Hillyard S A. Mechanisms and models of selective attention. In: Rugg MD, Coles M eds. Eletrophysiology of Mind. Oxford University Press, 1995. 40~78
  • 5[4]Mangun G R. Sustained visual-spatial attention produces costs and benefits in response time and evoked neural activity. Neuropsychologia, 1998, 36: 189~200
  • 6[5]Posner,M I. Orienting of attention. Quarterly Journal of Experimental Psychology, 1980, 32: 3~25
  • 7[6]Hawkins H L, Hillyard S A, Luck S J, et al. Visual attention mo-dulates signal detectability. Journal of. Experimental Psychology: Human, Perception & Performance, 1990, 16: 802~811
  • 8[7]Picton T W, Lins O G, Scherg M. The recording and analysis of event-related potentials. In: Boller F, Grafman (series ed.), Jonhson R Jr. (section ed.). Handbook of Neuropsychology, Vol 10, section 14. Event-related brain potentials and cognition: Amsterdam: Elsevier, 1995. 3~73
  • 9[8]Hillyard S A, Anllo-Vento L. Event-related brain potentials in the study of visual selective attention, Proc. Natl. Acad. Sci. USA, 1998, 95: 781~787
  • 10[9]Mangun G R. Neural mechanism of visual selective attention. Psychophysiology, 1995, 32: 4~18

共引文献23

同被引文献9

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部