期刊文献+

球团竖炉焙烧质量分类预测的建模研究 被引量:1

Research on Quality Prediction Classifier Modeling of Iron Ore Pellet Shaft Furnace
原文传递
导出
摘要 本文对钢铁球团竖炉焙烧质量分类预测的建模进行了研究,描述了球团竖炉焙烧质量分类预测问题,建立了支持向撼机和BP神经网络两种预测模型;在工业现场试验数据的基础上,比较了两种模型分类预测准确性,并考察了SVM模型参数对分类准确性的影响,结果表明:支持向量机分类预测模型的预测准确率可达84%,优于BP神经网络分类预测模型且具有更好的泛化性能. This paper presents research on quality prediction classifier modeling of iron ore pellet shaft furnace. The model was firstly described abstractly and then constructed based on support vector machine classifier and BP neural network classifier separately. Predictions of the two kinds of models were compared with the field data. Besides, the SVM model parameters' influence on model accuracy were discussed as well. The results showed that SVM classifier model could offer better performance than the BP classifier model with accuracy of 84%.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2013年第11期2065-2068,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金项目(No.51076027) 江苏省杰出青年基金项目(No.BK20130022)
关键词 支持向量机(SVM) BP神经网络 质量分类预报 support vector machine(SVM) BP neural network quality prediction classifier model
  • 相关文献

参考文献7

  • 1LIANG Ruquan, HE Jicheng. Moving Behavior of Pellets in a Pellet Shaft Furnace [J]. Journal of Central South University of Technology, 2008, 15(1): 280-283.
  • 2Takenaka Y, Kimura Y, Narita K et al. Mathematical Model of Direct Reduction Shaft Furnace and Its Applica- tion to Actual Operations of a Model Plant [J]. Computers & Chemical Engineering, 1986, 10(1): 675.
  • 3Takahashi R, Takahashi Y, Yagi J, et al. Operation and Simulation of Pressurized Shaft Furnace for Direct Reduc- tion [J]. Ironmaking Proceedings, 1984, 43:485-500.
  • 4Dwarapudi S, Gupta P K, Rao SM, et al. Prediction of Iron Ore Pellet Strength Using Artificial Neural Network Model[J]. ISIJ Internationa. 2007, 47(1): 67-72.
  • 5ZHU Jinggang. Classification Modeling of Pellet Quality Based on LSSVM [D]. Shenyang: Northeastern University, 2009.
  • 6CHAI Tianyou, DING Jinliang, WU Fenghua. Hybrid In- telligent Control for Optimal Operation of Shaft Furnace Roasting Process [J]. Control Engineering Practice, 2011, 19(3): 264-275.
  • 7Haykin S. Neural Networks: a Comprehensive Founda- tion [M]. Second Edition. New Jersey: Prentice-Hall, Inc, 1999:229-250.

同被引文献34

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部