期刊文献+

全变差与曲波联合稀疏表示模型与原对偶算法

Total Variation-Curvelet Joint Sparse Representation Model and Primal-Dual Algorithm
下载PDF
导出
摘要 全变差模型因能有效捕捉图像与视频中的细节信息而被广泛应用于机器视觉中,曲波变换具有较强捕捉二维信号中线状跳变信息的能力.文中结合全变差模型和曲波变换的优点,提出一类能更好地捕捉二维信号特征的联合稀疏表示模型,并用原对偶算法求解该模型,即原对偶全变差曲波算法.实验结果表明,用文中模型及求解算法处理后的图像,其客观质量及主观视觉效果均优于现有算法.文中算法也可用于解决图像去模糊、超分辨率等其它具有挑战性的图像处理问题. Total variation model is widely used in machine vision due to its strong ability of capturing the details of the images and the videos. Curvelet transform can capture the edges and curved lines of the 2D signals easily. Combining both advantages, a class of joint sparse representation model is proposed, i.e. total variation and curvelet (TVC). This model can represent the characteristics of the 2D signals more effectively. Primal-dual (PD) scheme is used to solve the model, which is called PDTVC algorithm. Experimental results show that PDTVC outperforms the existing algorithms in both subjective visual effect and objective image qualities. PDTVC can be applied to various challenging image processing tasks as well, such as deblurring and super resolution.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第10期944-950,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61072127) 广东省自然科学基金项目(No.S2011010001085 S2011040004211) 2012年广东省大学生创新创业训练项目 江门市财政专项资金项目(No.江财工[2011]131号)资助
关键词 全变差 曲波变换 稀疏表示 原对偶算法 Total Variation, Curvelet Transform, Sparse Representation, Primal-Dual Algorithm
  • 相关文献

参考文献21

  • 1Gonzalez R C, Richard E. Digital Image Processing. New York, USA: Prentice-Hall, 2002.
  • 2Rudin L I, Osher S. Total Variation Based Image Restoration with Free Local Constraints//Proc of the IEEE International Conference on Image Processing. Austin, USA, 1994, I: 31-35.
  • 3Rudin L I, Osher S, Fatemi E. Nonlinear Total Variation Based Noise Removal Algorithms. Physica D: Nonlinear Phenomena, 1992,60(1/2/3/4): 259-268.
  • 4Candes EJ, Demanet L, Donoho D L, et ttl. Fast Discrete Curvelet Transforms. Multiscale Modeling and Simulation, 2006, 5 (3 ) : 861- 899.
  • 5Donoho D L. Compressed Sensing. IEEE Trans on Information Theory , 2006,52(4): 1289-1306.
  • 6Stephen B, Vandenberghe L. Convex Optimization. Cambridge, UK: Cambridge University Press, 2004.
  • 7Vinje WE, GallantJ L. Sparse Coding and Decorrelation in Primary Visual Cortex during Natural Vision. Science, 2000, 287 (5456) : 1273-1276.
  • 8Olshausen B A, Field DJ. Sparse Coding of Sensory Inputs. Cu?rrent Opinion in Neurobiology, 2004, 14 ( 4) : 481-487.
  • 9AujolJ F. Some First-Order Algorithms for Total Variation Based Image Restoration.Journal of Mathematical Imaging and Vision, 2009,34(3): 307-327.
  • 10Scherzer O. Handbook of Mathematical Methods in Imaging. New York, USA: Springer-Verlag, 2010.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部