期刊文献+

基于线性映射的多物种捕食元胞遗传算法 被引量:2

Multi-Species Predator-Prey Cellular Genetic Algorithm with Linear Mapping
下载PDF
导出
摘要 为提高捕食元胞遗传算法的性能及在基因型上对种群进行区分,提出一种基于线性映射的多物种捕食元胞遗传算法.该算法通过引入映射矩阵,改变种群基因型到表现型的映射关系,使不同物种间所携带的遗传信息不同.在进化过程中,不同物种采用不同的遗传方式进行交叉,并根据种群离散程度自适应调整映射矩阵系数控制种群进化方向,有效提高算法跳出局部最优的能力.对若干低维及高维典型函数进行仿真实验,将文中算法与其它同类算法对比,实验结果表明,文中算法在全局收敛率上具有较明显的优势. To improve the performance of the predator-prey cellular genetic algorithm and distinguish different populations in genotype, a multi-species predator-prey cellular genetic algorithm with linear mapping is proposed. All individuals are divided into two parts, denoted predators and preys. The viability of individual is proportional to its fitness. A mapping matrix is applied to the process of calculating the fitness of population to change the mapping relationship between genotype and phenotype and make different species carry with different genetic information. During the evolution, species use different crossover methods and adjust the mapping matrix coefficients based on the dispersion degree of populations to control the evolution direction of the population and thus the ability of escaping from local optimum is enhanced. Compared with some other similar algorithms on several low and high dimension typical complicated functions, the proposed algorithm shows fine optimizing performance in global convergence.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第10期959-967,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.61262019 61202112)
关键词 多物种策略 元胞遗传算法 映射矩阵 进化方向 Multi-Species Strategy, Cellular Genetic Algorithm, Mapping Matrix, EvolutionDirection
  • 相关文献

参考文献19

  • 1Alba E, Dorronsoro B. Cellular Genetic Algorithms. New York, USA: Springer, 2008.
  • 2Gordo I, Campos P. Adaptive Evolution in a Spatially Structured Asexual Population. Genetica, 2006, 1270/2/3) : 217 -229.
  • 3Zhu Dalin, Zhan Teng, Tang Rui, et al. A Niche Cellular Genetic Algorithm Based on Evolution Rule. Advanced Materials Research, 2012. DOl: 10. 4028/www.scientific.net!AMR. 482. 484. 2450.
  • 4Alba E, Dorronsoro B. The Exploration/Exploitation Tradeoff in Dy?namic Cellular Algorithms. IEEE Trans on Evolutionary Computa?tion, 2005, 9(2): 126-142.
  • 5Nebro AJ, DurilloJ J, Luna F, et al. A Cellular Genetic Algorithm for Multi-Objective Optimization. InternationalJournal of Intelligent Systems, 2009, 24(7): 726-746.
  • 6Gasparri A, Panzieri S, Pascucci F. A Spatially Structured Genetic Algorithm for Multi-Robot Localization. Intelligent Service Robotics, 2009,2(1): 31-40.
  • 7Huy N Q, Soon 0 Y, Hiot L M, et al. Adaptive Cellular Memetic Algorithms. Evolutionary Computation, 2009, 17(2): 231-256.
  • 8Ishibuchi H, Sakane Y, Tsukamoto N, et al, Implementation of Cellular Genetic Algorithms with Two Neighborhood Structures for Single-Objective and Multi-Objective Optimization. Soft Computing, Methodologies and Applications. 2011, 15 (9): 1749-1767.
  • 9鲁宇明,黎明,李凌.一种具有演化规则的元胞遗传算法[J].电子学报,2010,38(7):1603-1607. 被引量:46
  • 10Du Weilin, Li Bin. Multi-Strategy Ensemble Particle Swarm Opti?mization for Dynamic Optimization. Information Sciences, 2008, 178(15): 3096-3109.

二级参考文献36

  • 1罗小平,韦巍.生物免疫遗传算法的几乎处处强收敛性分析及收敛速度估计[J].电子学报,2005,33(10):1803-1807. 被引量:11
  • 2蒋忠中,汪定伟.有时间窗车辆路径问题的捕食搜索算法[J].控制与决策,2007,22(1):59-62. 被引量:20
  • 3朱刚,马良.函数优化的元胞蚂蚁算法[J].系统工程学报,2007,22(3):305-308. 被引量:18
  • 4戴朝华,朱云芳,陈维荣,林建辉.云遗传算法及其应用[J].电子学报,2007,35(7):1419-1424. 被引量:84
  • 5Bernabe Dorronsoro,Enrique Alba.A simple cellular genetic algorithm for continuous optimization[A].IEEE Congress on Evolutionary Computation[C].Vancouver,BC,Canada,July 2006.2838-2844.
  • 6E Alba,B Dorronsoro,M Giacobini,et al.Decentralized cellular evolutionary algorithms[A].Handbook of Bioinspired Algorithms and Applications[C].CRC Press,2005.565-591.
  • 7G Rudolph,J Sprave.A cellular genetic algorithm with self-adjusting acceptance threshold[A].Genetic Algorithms in Engineering Systems:Innovations and Applications on IEE[C].Sheffield,UK,September 1995.365-372.
  • 8E Alba,B Dorronsoro.The exploration/exploitation tradeoff in dynarnic cellular genetic algorithms[J].IEEE Trans.on Evolutionary Computation,2005,9(2):126-142.
  • 9E Alba and J Troya.Cellular evolutionary algorithms:evaluating the influence of ratio[A].Proceedings of the 6th International Conference on Parallel Problem Solving from Nature[C].Berlin,Germany,2000.29-38.
  • 10Michael Kirley.A cellular genetic algorithm with disturbance:optimization using dynamic spatial interactions[J].Journal of Heuristics,2002,8(3):321-342.

共引文献65

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部