期刊文献+

Spectroscopic Diagnostics of Rotational Temperature in the Pulsed Atmospheric Air Plasma

Spectroscopic Diagnostics of Rotational Temperature in the Pulsed Atmospheric Air Plasma
下载PDF
导出
摘要 Dielectric barrier discharge(DBD) attracts lots of attentions for its great application promises,and the rotational temperature is one of its mostly important parameters.In order to measure the rotational temperature of a pulsed DBD in atmospheric air,the temperature is studied by using optical emission spectroscopy(OES).The discharge is excited by a high voltage pulse with 124 ns rise time and 230 ns full width at half maximum(FWHM) at a repetition rate of a few hundred hertz.The rotational temperatures are studied using different voltages,different repetition rates of the pulse power supply,and different gaps between dielectrics: They are in the range from 390 K to 500 K during the whole discharge.When the gap between dielectrics increases,the rotational temperature initially decreases and then increases.The rotational temperature changes complexly when the pulse repetition rate changes.When the voltage increases,the rotational temperature always decreases,which is not expected.These results allow one to predict the rotational temperature at different supply power parameters and electrode configurations,which is useful for the DBD's industrial application. Dielectric barrier discharge (DBD) attracts lots of attentions for its great application promises, and the rotational temperature is one of its mostly important parameters. In order to measure the rotational temperature of a pulsed DBD in atmospheric air, the temperature is studied by using optical emission spectroscopy (OES). The discharge is excited by a high voltage pulse with 124 ns rise time and 230 ns full width at half maximum (FWHM) at a repetition rate of a few hundred hertz. The rotational temperatures are studied using different vol- tages, different repetition rates of the pulse power supply, and different gaps between dielectrics: They are in the range from 390 K to 500 K during the whole discharge. When the gap between dielectrics increases, the rotational temperature initially decreases and then increases. The rotational temperature changes complexly when the pulse repetition rate changes. When the voltage increases, the rotational tempera- ture always decreases, which is not expected. These results allow one to predict the rotational temperature at different supply power parameters and electrode configurations, which is useful for the DBD's industrial application.
出处 《高电压技术》 EI CAS CSCD 北大核心 2013年第10期2568-2572,共5页 High Voltage Engineering
基金 Project supported by National Nature Science Foundation of China (11035004), Double Hundred Talent Foundation of CAEP (2009R0102), Key Laboratory of Puised Power of CAEP Science and Technology Development Foundation (2008B040237).
关键词 转动温度 高压脉冲 空气等离子 光谱诊断 大气 介质阻挡放电 光学发射光谱 脉冲重复频率 dielectric barrier discharge optical emission spectroscopy rotational temperature nanosecond pulse pulse parameters relativeintensity
  • 相关文献

参考文献15

  • 1Dockery K P, Sieber K D, Knapp F A, et al. Surface acid chemistry associated with dielectric barrier discharge (DBD) treatment of polyethylene[J]. Plasma Sources Science and Technology, 2007, 16(1): 42-49.
  • 2Chen Q, Zhang Y F, Han E, et al. Atmospheric pressure DBD gun arid its applica- tion in ink printability[J]. Plasma Sources Science and Technology, 2005, 14(4): 670-675.
  • 3Celestin S, Boussard G C, Guaitella O, et al. Influence of the charges deposition on the spatio-temporal self-organization of streamers in a DBD[J]. Journal of Physics D: Applied Physics, 2008, 41(20): 205214.
  • 4王新新.介质阻挡放电及其应用[J].高电压技术,2009,35(1):1-11. 被引量:195
  • 5Walsh J L, Kong M G. 10 ns pulsed atmospheric air plasma for uniform treatment of polymeric surfaces[J]. Applied Physics Letters, 2007, 91 (25): 251504.
  • 6邵涛,章程,于洋,方志,徐蓉,严萍.空气中纳秒脉冲均匀介质阻挡放电研究[J].高电压技术,2012,38(5):1045-1050. 被引量:31
  • 7姜慧,邵涛,车学科,章程,李文峰,严萍.纳秒脉冲表面放电等离子体影响因素的实验研究[J].高电压技术,2012,38(7):1704-1710. 被引量:20
  • 8Walsh J L, Shi J J, Kong M Ca Submicrosecond pulsed atmospheric glow dis- charges sustained without dielectric barriers at kilohertz frequencies[J]. Applied Physics Letters, 2006, 89(16): 161505.
  • 9Verreycken T, Schram D C, Leys C, et al. Spectroscopic study of an atmospheric pressure dc glow discharge with a water electrode in atomic and molecular gases[J]. Plasma Sources Science and Technology, 2010, 19(4): 045004.
  • 10QI Bing, HUANG Jianjun, FAN Zhen, et al. Two-dimensional distribution of rotational and vibrational temperatures at atmospheric pressure cold plasma jet[J]. Journal of Shenzhen University (Science and Engineering), 2009, 26(2): 208-212.

二级参考文献50

  • 1Roth J R. Industrial plasma engineering[M]. Bristol: Institute of Physics Publishing, 1995.
  • 2Kogelschatz U. Dielectric-barrier discharges: their history, dis charge physics, and industrial applications[J]. Plasma Chemistry and Plasma Processing, 2003, 23(1): 41-46.
  • 3Kanazawa S, Kogoma M, Moriwaki T, et al. Stable glow plasma at atmospheric pressure[J]. J Phys D: Appl Phys, 1988, 21 (5) : 838-840.
  • 4Wang X X, Li C R, Lu M Z o et al. Study of atmospheric pressure glow discharge[J]. Plasma Sources Sci Technol, 2003, 12 (3): 358-361.
  • 5Raizer Y P. Gas discharge physics[M]. Berlin: Springer-Verlag, 1991.
  • 6Wang X X, Luo H Y, Liang Z, et al. Influence of wire mesh electrodes on dielectric barrier discharge[J]. Plasma Sources Sci Technol, 2006, 15(4): 845-848.
  • 7Golubovskii Y B, Maiorov V, Behnke J F. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen[J]. J Phys D: Appl Phys, 2002, 35(8):751-761.
  • 8Li M, Li C R, Wang X X, et al. Effect of surface charge trapping on dielectric barrier discharge[J]. Appl Phys Lett, 2008, 92(3) : 031503.
  • 9Li C R, Wang X X, Li M, et al. Dielectric barrier discharge using corona modified silicone rubber[J]. Europhys Lett, 2008, 84(2) : 25002.
  • 10Gherardi N, Massines F. Mechanisms controlling the transl tion from glow silent discharge to streamer discharge in nitro gen[J]. IEEE Trans on Plasma Science, 2001, 29(3): 536 -544.

共引文献234

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部