期刊文献+

蚁群算法参数组合的博弈优化 被引量:1

Combination of ant colony algorithm parameters optimization based on game theory
下载PDF
导出
摘要 针对蚁群优化算法参数组合选取的问题,提出了一种基于博弈论的蚁群算法参数优化模型。由于算法各个参数之间相互依赖、相互影响的关系,将各参数作为博弈论中的局中人,利用算法收敛时间与各个参数之间的数学关系,将其转化为博弈模型中参数的收益函数,求解出算法的最优参数组合。仿真结果表明,该模型能够方便有效求解出蚁群算法的最优参数组合。 For the problem of ant colony algorithm combined parameters selection, a model of optimum combined parameters selection based on game theory is proposed. Due to the parameters influence and dependence on each other, they are as players. In this model, using the payoff function that transforms from the math relation between convergence time and parameters can obtain the best combination of parameters. Simulation results show that this model can get the combined parameters effectively.
出处 《计算机工程与应用》 CSCD 2013年第21期51-55,共5页 Computer Engineering and Applications
基金 西北工业大学创业种子基金(No.Z2013035)
关键词 蚁群算法 博弈论 参数组合优化 收益函数 ant colony algorithm game theory combination of parameters optimization payoff function
  • 相关文献

参考文献11

二级参考文献64

  • 1闵克学,葛宏伟,张毅,梁艳春.基于蚁群和粒子群优化的混合算法求解TSP问题[J].吉林大学学报(信息科学版),2006,24(4):402-405. 被引量:18
  • 2Barto A G, Sutton R S, Brower P S, Associative search network: A reinforcement learning associative memory[ J ]. Biological Cybem,1981,40(2): 201-211.
  • 3Coloni A, Dorigo M, Maniezzo V, Ant system: Optimization by a colony of cooperating agent[J].IEEE Trans on Systems,Man and Cybemetics-Part B:Cybemetcs.1996,26(1):29-41
  • 4Dorigo M,Gambardella L M. Ant colony system: A cooperative learning approach to the tavelling salesman Problem[J].IEEE Trans on Evolutionary Computation.1996,1(1):53-66
  • 5Colorni A, Dorigo M, Maniezzo V. Distributed Optimization by Ant Colonies [A]. Proc of ECAL'91 European Conf on Artificial Life[C]. Paris: Elsevier Publishing, 1991:134-144.
  • 6Thomas Stutzle, Marco Dorigo. A Short Convergence Proof for a Class of Ant Colony Optimization Algorithms [J]. IEEE Trans on Evolutionary Computation, 2002, 6 (4):358-365.
  • 7Amr Badr, Ahmed Fahmy. A Proof of Convergence for Ant Algorithms [J]. Information Sciences, 2004, 160:267-279.
  • 8Walter J. Gutjahr. A Graph-based Ant System and Its Convergence [J]. Future Generation Computer Systems,2000,16: 873-888.
  • 9Walter J Gutjahr. ACO Algorithms with Guaranteed Convergence to the Optimal Solution[J]. Information Processing Letters,2002,82: 145-153.
  • 10Colorni A,Dorigo M,Maniezzo V,et al.Distributed optimization by ant colonies[C]//Proceedings of the 1st European Conference on Artificial Life,1991:134-142.

共引文献451

同被引文献12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部