摘要
为了有效识别出滚动轴承的内圈故障、外圈故障、滚动体故障三种故障类型,提出一种基于经验模态分解EMD的小波包去噪和自适应神经模糊推理系统ANFIS的诊断方法。对故障信号进行去噪预处理,对已处理的信号利用ANFIS进行故障识别。结果表明,采用基于EMD的小波包去噪方法能有效地提高信噪比,在去噪的基础上,采用ANFIS进行故障诊断,诊断结果的误差低,能很好地识别出上述三种故障类型。
In order to diagnose rolling bearing' s three fault types more effectively, such as inner race fault, outer race fault and balls fault, a method that Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and wavelet packet de-noising based on Empirical Mode Decomposition(EMD) is proposed. As the signals are often corrupted by noise, so they are de-noised, and preprocessed signals are investigated using ANFIS analysis. The results show that the wavelet packet de-noising based on EMD can improve the Signal-to-Noise Ratio (SNR) effectively. After signals are preprocessed, the result of ANFIS analysis shows that average error is low. It can diagnose the three fault types above-mentioned better.
出处
《计算机工程与应用》
CSCD
2013年第21期230-234,共5页
Computer Engineering and Applications
基金
甘肃省科技支撑计划(科技支甘)项目(No.1011JKCA172)
兰州市科技计划项目(No.2011-1-106)
关键词
滚动轴承
经验模态分解
小波包去噪
自适应神经模糊推理系统
故障诊断
rolling bearing
Empirical Mode Decomposition (EMD)
wavelet packet de-noising
Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
fault diagnosis