期刊文献+

响应面法优化制备巨菌草纳米纤维素及其性能表征 被引量:6

Optimization of processing conditions of pennisetum sinese roxb cellulose nanocrystalline using response surface methodology and characterization
下载PDF
导出
摘要 以巨菌草(pennisetumsineseroxb)为原料,采用酸水解法制备了纳米纤维素(CNC),并应用响应面分析法对影响纳米纤维素得率的3个主要因素即硫酸浓度、温度、时间进行了优化。实验结果表明,利用Design—Expert的Box—behnken中心组合设计建立的二次多项式模型较显著,当硫酸浓度为51%,温度为60℃,时间为120min时,纳米纤维素的得率达到最大值80%。制备的CNC呈棒状,直径约为20~30nm,长度100~200nm;XRD图谱表明CNC的结晶度较巨菌草显著提高;红外光谱表征显示,CNC仍保持纤维素的基本结构。 Cellulose nanocrystalline (CNC) was prepared from Pennisetum Sinese Roxb by hydrolysis with sul- furic acid. The effects of sulfuric acid concentration, reaction temperature and reaction time on the yield of CNC were optimized with response surface methodology. The mathematical model was established by using the De- sign-Expert software. The results showed that quadratic model was the best model to describe the relationship between the yield of CNC and the factors. With the sulfuric acid concentration of 51%, reaction temperature of 60℃ and the reaction time of 120min, the yield of CNC reached the highest value of 80% in the investigation. The prepared CNC was rod-like with the diameter of 20-30nm and the length of 100-200nm. The XRD spectra showed that the crystallinity of CNC was higher than pennisetum sinese roxb fiber. The infrared spectra showed that CNC had similar structure with pennisetum sinese roxb fiber.
出处 《功能材料》 EI CAS CSCD 北大核心 2013年第20期2985-2989,2995,共6页 Journal of Functional Materials
基金 国家自然科学基金资助项目(31170520) 福建省自然科学基金资助项目(2010J01270) 福建省教育厅资助项目(JK2011016)
关键词 巨菌草 纳米纤维素 响应面分析法 表征 pennisetum sinese roxb cellulose nanocrystalline response surface methodology characterization
  • 相关文献

参考文献14

  • 1Tang L R, Huang B, Ou W, et al. Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hy- drolysis of cellulose[J]. Bioresour Technol, 2011, 102 (23): 10973-10977.
  • 2Jean B, Dubreuil F, Heux L, et al. Structural details of cellulose nanocrystals/polyelectrolytes multilayers probed by neutron reflectivity and AFM[J]. Langmuir, 2008, 24 (7): 3452-3458.
  • 3Dufresne A. Comparing the mechanical properties of high performances polymer nanoeomposites from biological sources[J]. J Nanosci Nanotechnol, 2006, 6 (2) : 322- 330.
  • 4曲萍,高源,白露,张力平.聚乙二醇增容纳米纤维素/聚乳酸共混体系的研究[J].功能材料,2011,42(B02):69-72. 被引量:10
  • 5Samir M A S A, AUoin F, Sanchez J Y, et al. Prepara- tion of cellulose whiskers reinforced nanocomposites from an organic medium suspension [J]. Macromolecules, 2004, 37(4) : 1386-1393.
  • 6林占焙,林辉.菌草学[M].北京:中国农业科学出版社,2003:124-132.
  • 7王林风,程远超.硝酸乙醇法测定纤维素含量[J].化学研究,2011,22(4):52-55. 被引量:95
  • 8Mandal A, Chakrabarty D. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization[J]. Carbohydr Polym,2011, 86(3) : 1291-1299.
  • 9黄占华,张斌,邹莉,张立君,胡晓峰,于欣.一种潜在新型材料——真菌纤维的晶体结构表征[J].功能材料,2012,43(7):940-943. 被引量:8
  • 10张力平,唐焕威,曲萍,李帅,秦竹,孙素琴.一维棒状纳米纤维素及光谱性质[J].光谱学与光谱分析,2011,31(4):1097-1100. 被引量:20

二级参考文献52

共引文献139

同被引文献63

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部