期刊文献+

基于Bayes时空理论探讨北京市结核病演化特征及生态影响因素分析 被引量:6

Exploration of Tuberculosis Evolution Characteristics and Ecological Factors Based on the Bayes Temporal-Spatial Theory
下载PDF
导出
摘要 目的探讨北京市结核病时空演化特征与生态影响因素。方法基于Bayes时空理论,对2005-2009年北京市18区县结核病患病数据进行时空建模,以DIC值最小为标准找出最优模型,并研究协变量对模型的影响,结合ArcGis10.0软件绘制北京市18区县结核病时空危险度的分布图谱。结果全部模型中,含协变量的时空交互效应模型最优(DIC=818.834),生态分析的结果表明,除人均地区生产总值的升高会降低结核病危险度之外,每千人口拥有床位数、年平均相对湿度、年平均空气质量指数和年平均最高温度的升高会增高结核病患病危险度。结论 Bayes时空模型与生态学分析技术结合,能动态分析结核病的时空演化特征和生态影响因素,有利于发现重点疫区,为制定适宜的防治措施提供科学依据。 Objective To explore tuberculosis temporal-spa- tial evolution characteristics and ecological factors. Methods The model is based on the tuberculosis data in Beijing 18 districts and counties between 2005 and 2009, find out the optimum model ( DIC minimum value), and by using ecology analysis technology, finding out association of tuberculosis risk and covariates, and combined with ArcGisl0. 0 show the distribution of space and time risk of tuberculosis in Beijing 18 districts and counties. Re- suits The optimization model is Bayes spatial-temporal interactive model (DIC = 818. 834). The results of ecological analysis shows that the risk of tuberculosis are significantly associated with the number of bed in hospital, annual average relative humidity, annual average air quality index and annu- al average temperature. Conclusion Combination of Bayes spatial-tem- poral model and ecological analysis will help for finding key areas of tuber- culosis.
出处 《中国卫生统计》 CSCD 北大核心 2013年第5期658-660,664,共4页 Chinese Journal of Health Statistics
基金 国家科技部艾滋病和病毒性肝炎等重大传染病防治重大专项课题(2012ZX10005009-003) 国家科技部973项目(2011CB505404) 国家科技部重大专项中医药防治重大传染病的临床科研一体化技术平台课题(2009ZX10005-019)
关键词 结核病 相对危险度 Bayes理论时空模型 Tuberculosis Relative risk Bayes theory Spatial-temporal model
  • 相关文献

参考文献10

  • 1刘云霞,姜世闻,刘言训,王瑞,薛付忠.基于潜变量与空间统计理论的耐多药结核病空间流行病学模型研究[J].中国卫生统计,2011,28(6):648-653. 被引量:3
  • 2Liu YN, Wang W, Li X, et al. Geographic distribution and risk factors of the initial adult hospitalized cases of 2009 pandemic influenza A ( H1 N1 ) virus infection in China's Mainland. PLoS One, 2011,6 ( 10 ) : e25934.
  • 3李秀央,陈坤.扫描统计量的理论及其在空间流行病学中的应用[J].中华流行病学杂志,2008,29(8):828-831. 被引量:29
  • 4Cowles, MK. Review of WinBUGS 1.4. The American Statistician. 2004 ;58 (4) :330-336.
  • 5孟海英,刘桂芬,罗天娥.WinBUGS软件应用[J].中国卫生统计,2006,23(4):375-377. 被引量:12
  • 6Liu Y, Li X, Wang W, et al. Investigation of space-time clusters and geo-spatial hotspots for the occurrence of tuberculosis in Beijing. Inter- national Journal of Tuberculosis and Lung Disease, 2012,16 ( 4 ) : 486 - 491.
  • 7Lawson, AB. Bayes Disease Mapping:Hierarchical Modeling in spatial, 2008.
  • 8Sales CM, Figueiredo TA, Zandonade E, et al. Spatial analysis on child- hood tuberculosis in the state of Espirito Santo, Brazil, 2000 to 2007. Revista da Sociedade Brasileira de Medicina Tropical, 2010,43 ( 4 ) : 435-439.
  • 9霍爱梅,赵达生,方立群,曹务春.华北地区主要呼吸道传染病与气象条件的关系[J].中国医药导报,2011,8(32):153-156. 被引量:38
  • 10杨子丹.五峰县2005年-2010年结核病疫情分析[J].中外健康文摘,2011,8(27).

二级参考文献25

共引文献79

同被引文献47

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部