期刊文献+

稳健Poisson模型:两水平模型与GEE模型在相对危险度或患病率比估计中的应用比较 被引量:1

A Comparison between Two-level and GEE Based on Robust Poisson Regression Models in the Estimation of Relative Risk or Prevalence Ratio
下载PDF
导出
摘要 目的在处理具有层次结构特征的非罕见结局事件资料时,比较基于稳健Poisson模型的两水平模型和GEE模型在估计RR/PR时的应用。方法将两水平稳健Poisson模型及稳健Poisson-GEE应用到2010年欧洲社会调查资料,估计影响居民生活满意度的各因素相关的PR及95%CI,以说明两模型在理论和应用上的区别和联系。结果稳健Poisson-GEE模型的PR估计值与稳健Poisson回归模型相同,但置信区间较宽;两水平稳健Poisson模型的PR值较GEE模型为低,显示了随机效应对解释变量的混杂作用。结论两种方法均可处理具有层次结构特征的非罕见结局事件的RR/PR估计,但两水平模型比GEE可提供更多随机效应的信息,且易于扩展至更高水平或随机系数模型。 Objective To compare two-level and GEE based robust Poisson regression models in estimation of relative risk ( RR ) or prevalence ratio (PR) for common outcome data with intra-class correla- tion. Methods Two-level and GEE based robust Poisson regression models were compared by examing factors associated with life satisfaction using data from the 2010 European Social Survey. Prevalence ratios and 95 % confidence intervals ( 95 % CIs ) were estimated. Results Com- pared to results from regular robust Poisson model, the GEE based robust Poisson model provided the same PR point estimates but wider 95% Cls. The two level robust Poisson model revealed lower point estimates,indica- ting potential confounding effects caused by random effects on the assoca- tion of interest. Conclusion Both two-level and GEE based methods are suitable for estimating relative risk or prevalence ratio for common outcomes with the hierarchical structure. The two-level model is superior when there are random effects, and can be easily extended for higher hierarchical structures.
出处 《中国卫生统计》 CSCD 北大核心 2013年第5期683-686,共4页 Chinese Journal of Health Statistics
基金 2010年广东省自然科学基金资助(10151022401000018)
关键词 层次结构 非罕见结局 稳健Poisson回归 广义估计方程 相对危险度 患病率比 Hierarchical structure Non-rare outcome Robust Poisson regression Generalized estimating equations Rela- tive risk Prevalence ratio
  • 相关文献

参考文献11

  • 1Barrns AJ, Hirakata VN. Alternatives for logistic regression in cross-sec- tional studies:an empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodo1,2003,3:21.
  • 2Petersen MR, Deddens JA. A comparison of two methods for estimating prevalence ratios. BMC Med Res Methodo1,2008 ,8 :9.
  • 3Lumley T, Kronmal R, Ma S: Relative risk regression in medical re- search: models, contrasts, estimators, and algorithms. UW Biostatistics working Paper Series. 2006: 293. http://www, bepress, com/uwbio- stat/paper293.
  • 4Deddens JA, Petersen MR, Lei X. Estimation of prevalence ratios when proc genmod does not converge. In: Proceedings of the 28th Annual SAS Users Group International Conference, Paper 270 - 28. Cary, NC : SAS Institute Inc 2003.
  • 5Deddens JA, Petersen MR. Re.." Estimating the relative risk in cohort studies and clinical trials of common Outcomes ". Am J Epidemiol, 2004,159(2) :213 -4;author reply 214 -5.
  • 6Zou G. A modified poisson regression approach to prospective studies with binary data. Am J Epidemiol,2004,159 (7) :702 -706.
  • 7Badi H, Baltagi. A companion to theoretical econometrics, Blackwell, Oxford (U. K. ) ,2001:331 -348.
  • 8Zou G, Allan D. Extension of the modified Poisson regression model to prospective studies with correlated binary data. Stat Methods Med Res, 2011,11,8. [Epub ahead of print].
  • 9Lee J, Chia KS. Estimation of prevalence rate ratios for cross sectional data : an example in occupational epidemiology. Br J Ind Med, 1993,50 (9) :861 -862.
  • 10张春茂,李婵娟,蒋志伟,夏结来.具有相关关系的二分类资料处理方法比较[J].中国卫生统计,2010,27(5):464-466. 被引量:3

二级参考文献26

共引文献12

同被引文献25

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部