期刊文献+

顾及观测误差的平面坐标系统转换方法 被引量:5

A method of plane coordinates transformation considering observation error
原文传递
导出
摘要 坐标系统转换的传统方法没有顾及控制点在原坐标系统中的观测误差。为了克服这一不利因素,顾及观测误差对坐标系统转换的影响,本文提出应用总体最小二乘算法实现平面坐标系统转换。用实测数据验证总体最小二乘算法实现平面坐标系统转换的可行性,并与传统的最小二乘模型进行比较,证明了方法的有效性。 Traditional coordinate system transformation methods do not consider the observation error of control points in the original coordinate system. To consider the observation error which has an affect on the coordinate system transformation, the paper applied Total Least Squares(TLS)to achieve plane coordinate system conversion. Measured data were applied to test the feasibility of the meth- od in plane coordinate system conversion, and comparison with traditional Least Squares (IS) was carried out finally. The result veri- fied the effectiveness of the proposed method.
作者 陶叶青 杨娟
出处 《测绘科学》 CSCD 北大核心 2013年第6期160-161,184,共3页 Science of Surveying and Mapping
关键词 坐标系统转换 总体最小二乘 最小二乘 观测误差 coordinate system transformation Total Least Squares (TLS) Least Squares(LS) observation error
  • 相关文献

参考文献9

二级参考文献30

  • 1陈义,沈云中,刘大杰.适用于大旋转角的三维基准转换的一种简便模型[J].武汉大学学报(信息科学版),2004,29(12):1101-1105. 被引量:171
  • 2Golub G H, Lan Loan F C. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980,17(6 ) : 883-893.
  • 3Schaffrin B, Felus Y A. On the Multivariate Total Least-squares Approach to Empirical Coordinate Transformations [J].Three Algorithms J Geod, 2008,82:373-383.
  • 4Schaffrin B, Felus A Y. Multivariate Total Least- squares Adjustment for Empirical Affine Transformations[C]. The 6th Hotine Marussi Symposium for Theoretical and Computational Geodesy, Springer, Berlin, 2007.
  • 5Schaffrin B, Lee I P, Felus Y A, et al. Total Least-squares (TLS) for Geodetic Straight-line and Plane Adjustment[J]. Boll Geod Sci Affini, 2006, 65(3): 141-168.
  • 6Schaffrin B. A Note on Constrained Total Leastsquares Estimation[J]. Linear Algebra Appl, 2006, 417(1) :245-258.
  • 7Eckart C, Young G. The Approximation of One Matrix by Another of Lower Rank [J]. Psychometrika ,1936,1(3) :211-218.
  • 8Van Huffel S, Vandewalle J. The Total Leastsquares Problem Computational Aspects and Analysis[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1991.
  • 9Strang G. Linear Algebra and Its Applications[M]. 3rd ed. San Diego: Harcourt Brace Jovanovich. 1988.
  • 10程云鹏.矩阵论[M].西安:西北大学出版社,2000..

共引文献287

同被引文献40

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部