期刊文献+

基于区块位置与加权视觉语义映射的语义图像检索 被引量:1

Semantic Image Retrieval Based on Region Location and Weight Visual Semantics Mapping
原文传递
导出
摘要 提出了一种新的图像语义映射方法WVS-RSSVM,采用自适应的NCut分割方法自动发现并图像中的区域,提取出每个区域包含了位置信息的特征,达到消除一定歧义的目的。并将这些区域采用加权的方式映射为视觉语义空间中的一个点,然后通过SVM分类的方法进行语义学习,实现对图像的语义标注。并且以SVM分类时点到边界的距离作为该点属于某个语义的隶属度,实现检索的排序。实验结果表明,该方法对表达图像的主要语义以及发现有歧义的区块代表的语义,有很好的效果。 A novel image semantics mapping method named WVS-RSSVM is proposed, which employ self-adapting NCut to segment image in- to regions. The region features including location information is extracted to disambiguate of the regions. The image is mapped into the visual semantics space by weighted mapping method. Then its semantics are learned by SVM to annotate the image. The distance between the image feature vector and the SVM's hyperplane is used as the degree of the image belongs to the class. It's proven that in this method ,the ambiguity can be eliminated to a certain extent.
作者 朱征宇 钟锐
出处 《世界科技研究与发展》 CSCD 2013年第5期624-626,636,共4页 World Sci-Tech R&D
基金 科技部国家科技支撑计划重点项目(2011BAH25B04)资助
关键词 视觉语义 带权映射 位置特征 支持向量机 visual semantic weighted-mapping location feature SVM
  • 相关文献

参考文献12

  • 1RUI Y,HUANG T S, CHANG S F. Image retrieval: past, present, and future[ C ]. Proceedings of International Symposium on Multimedia Information Processing, 1997 ( 10 ) : 1-23.
  • 2GUDIVADA V N, RAGHAVAN V V. Content based image retrieval systems[J]. Computer, 1995,28 (9) : 18-22.
  • 3VASCONCELOS N. From pixels to semantic spaces:advances in content-based image retrieval [ J ]. Computer,2007,40 ( 7 ) : 20-26.
  • 4SETHI I K, COMAN I L. Mining association rules between low-level image features and high-level concepts [J]. Proceedings of the SPIE Data Mining and Knowledge Discovery,2001 (4 384) :279-290.
  • 5STANCHEV P L, GREEN D J, DIMITROV B. High level color similarity retrieval[ J ], International Journal of Information Theories and Application,2003,10 ( 3 ) : 363-369.
  • 6SHOTTON J, WINN J, ROTHER C, et al. TextonBoost for image understanding:muhi-class object recognition and segmentation by jointly modeling texture, layout, and context [J]. International Journal of Computer Vision,2009,81 ( 1 ) :2-23.
  • 7TEXTONS J B, the elements of texture perception, and their interactions [ J 1. Nature, 1981,290 (5 802 ) :91-97.
  • 8李大湘,彭进业,贺进芳.基于视觉语义与RSSVM的图像检索[J].华南理工大学学报(自然科学版),2010,38(4):156-161. 被引量:4
  • 9PHILBIN J, CHUM O, ISARD M, et al. Object retrieval with large vocabularies and fast spatial Image matching [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition ,2007.
  • 10SHI J, MALIK J. Normalized cuts and image segmentation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (8) :888-905.

二级参考文献9

  • 1Liu Ying,Zhang Deng-sheng,Lu Guo-jun,et al.A survey of content-based image retrieval with high-level semantics[J].Pattern Recognition,2007,40(1):262-282.
  • 2Zhang L,Lin F,Zhang B.Support vector machine learning for image retrieval[C]∥Proceedings of the 2001 International Conference on Image Processing.Thessaloniki:IEEE,2001:721-724.
  • 3Philbin J,Chum O,Isard M,et al.Object retrieval with large vocabularies and fast spatial Image matching[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Minneapolis:IEEE,2007:1-8.
  • 4Chen Yi-xin,Bi Jin-bo,James Z W.MILES:multiple-instance learning via embedded instance selection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(12):1931-1947.
  • 5Shi J,Malik J.Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
  • 6Chen Yi-xin,James Z W.Image categorization by learning and reasoning with regions[J].Journal of Machine Learning Research,2004,5(8):913-939.
  • 7Hu Qing-hua,Xie Zong-xia,Yu Da-ren.Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation[J].Pattern Recognition,2007,40(12):3509-3521.
  • 8张菁,沈兰荪,David Dagan Feng.基于视觉感知的图像检索的研究[J].电子学报,2008,36(3):494-499. 被引量:32
  • 9罗斌,郑爱华,汤进.基于模糊多类SVM的图像检索相关反馈[J].华南理工大学学报(自然科学版),2008,36(9):107-112. 被引量:3

共引文献113

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部