期刊文献+

基于模型预测残差闭环潜能指标的MPC控制器实时性能监控 被引量:1

Real-time performance monitoring of MPC based on model prediction residual closed-loop potential index
下载PDF
导出
摘要 由于模型预测控制器对模型失配等不确定因素具有较强的鲁棒性,因此现有的多步预测误差方法不能及时显著地检测到由模型失配导致的MPC控制器性能潜能的变化。针对上述问题,提出一种改进的多步预测误差方法和实时性能监控策略。考虑到MPC控制器的模型预测残差能有效反映模型失配等信息,利用预测残差对现有多步预测误差方法进行改进,改进的方法能够更好地检测由模型失配引起的MPC控制器性能潜能的改变。在连续搅拌槽加热器(continuous stirred tank heater,CSTH)系统上的仿真实验验证了该方法的可行性与有效性。 Performance monitoring of model predictive control(MPC)technology has received much attention in both academic and industrial circles.For model-based control technique,model accuracy is a key factor to ensure its performance.So model-plant mismatch(MPM)is important in the procedure of control performance monitoring.In recent years,the multi-step prediction error approach for MPC performance potential has been developed without requiring the knowledge of plant model and interactor matrix.However,since the MPC controller has strong robustness to MPM and other uncertainties,the multi-step prediction error approach is not sensitive to performance potential change in MPC controller which is caused by MPM.Considering that model prediction residuals of MPC controller could effectively reflect the information of MPM,an improved approach based on model prediction residuals was developed to resolve this problem.Meanwhile,a performance benchmark and real-time performance monitoring strategy based on the improved approach was defined to monitor MPC control performance.Theoretical analysis and experimental results showed that the improved approach not only possessed the advantages of the original approach,but also could better detect the change in MPC controller performance potential by MPM.Simulation example in the continuous stirred tank heater(CSTH)system illustrated the feasibility and effectiveness of this approach.
出处 《化工学报》 EI CAS CSCD 北大核心 2013年第11期4121-4127,共7页 CIESC Journal
基金 国家自然科学基金项目(61273160) 山东省自然科学基金项目(ZR2011FM014)~~
关键词 模型预测控制 多步预测误差 模型失配 模型预测残差 实时性能监控 model predictive control multi-step prediction error model-plant mismatch model prediction residual real-time performance monitoring
  • 相关文献

参考文献4

二级参考文献71

  • 1熊伟丽,肖应旺,徐保国.基于特征子空间的滑动窗PCA在批过程故障诊断中的应用[J].计算机与应用化学,2006,23(4):303-306. 被引量:4
  • 2Jelali M. An overview of control performance assessment technology and industrial applications[J]. ControlEngineering Pract, 2006, 14: 441-466.
  • 3Horch A, Dumont G. Special issue for control loop performance assessment[J]. Int J of Adaptive Control and Signal Processing, 2003, 17: 523-525.
  • 4Harris T J, Boudreau E MacGregor J E Performance assessment using of multivariable feedback controllers[J]. Automatica, 1996, 23: 1505-1518.
  • 5Huang B, Shah S L, Fujii H. The unitary interactor matrix and its estimation using closed-loop data[J]. J of Process Control, 1997, 7: 195-207.
  • 6Ko B S, Edgar T E Performance assessment of multivariable feedback control systems[J]. Automatica, 2001, 37: 899-905.
  • 7Kadali R, Huang B. Multivariate control performance assessment without interactor matrix[C]. IFAC Advanced Control of Chemical Processes. 2003: 61-66.
  • 8Huang B, Ding S X, Thornhill N E Practical solutions to multivariate feedback control performance assessment problem: Reduced a prior knowledge of interactor matrices[J]. J of Process Control, 2005, 15: 573-583.
  • 9Yu J, Qin S J. MIMO control performance monitoring using left/right diagonal interactors[J]. J of Process Control, 2009.
  • 10Huang B, Shah S L. Practical issues in multivariable feedback control performance assessment[J]. J of Process Control, 1998,8: 421-430.

共引文献22

同被引文献21

  • 1Darby M L, Nikolaou M. MPC: current practice and challenges [J]. Control Engineering Practice, 2012, 20(4): 328-342.
  • 2Zhang R, Zhang Q. Model predictive control performance assessment using a prediction error benchmark//Advanced Control of Industrial Processes (ADCONIP)[C]. IEEE, 2011:571-574.
  • 3ZhaoYu(赵宇).Prediction error methods based strategies forcontrol loop performance assessment &monitoring[D]. Hangzhou: Zhejiang University, 2011.
  • 4Jelali M. An overview of control performance assessment technology and industrial applications [J]. Control Engineering Practice, 2006, 14(5): 441-466.
  • 5Horch A. Condition monitoring of control loops [D]. Sweden: Royal Institute of Technology, 2000.
  • 6Huang B. Multivariable model validation in the presence of time-variant disturbance dynamics [J]. Chemical Engineering Science, 2000, 55(20): 4583-4595.
  • 7Huang B. Bayesian methods of control loop monitoring and diagnosis [J]. Journal of Process Control. 2008.18(9): 829-838.
  • 8Huang B, Ding S X, Thornhill N. Alternative solutions to multivariable control performance problems [J]. Journal of Process Control, 2006,16(5): 457-471.
  • 9Zhao Yu, Chu J, Su H Y, Huang B. Multi-step predictive error approach for controller performance monitoring [J]. Control Engineering Practice, 201 0 18( 1 ): 1 - 1 2.
  • 10Tian X M, Chert G Q, Chan S. A data-based approach for multivariate model predictive control performance monitoring [J]. Neurocomputing, 2011, 74(4): 588-597.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部