期刊文献+

诱导型和组成型启动子对酿酒酵母合成紫杉二烯的影响 被引量:3

Effects of inducible and constructive promoters on production of taxadiene in Saccharomy cescerevisiae
下载PDF
导出
摘要 近年来利用合成生物学手段生产萜类化合物逐渐成为一种趋势。诱导型和组成型启动子调控萜类的生产各有利弊,而启动子类型的选择需要根据特定体系和产物来进行具体分析。本工作针对紫杉醇关键前体紫杉二烯的合成,分别研究了酵母细胞中诱导型启动子和组成型启动子的调控。首先通过过表达酵母内源截短的羟甲戊二酰辅酶A基因(thmgr)和法尼基焦磷酸合酶基因(erg20),实现了对酵母内源模块的调控。随后向改造后的底盘细胞中整合入诱导性启动子调控的外源紫杉二烯合成模块,得到了紫杉二烯产量为5.2mg·L-1的人工酵母。而换用组成型启动子tdh3p调控时,产量达到11.5mg·L-1,说明对于这个体系组成型启动子更为适合。通过简单的发酵条件优化,该菌株产量提升了70%,达到19.5mg·L-1。组成型启动子调控的菌株可以利用葡萄糖作为碳源,因而更利于后续大规模发酵。 In recent years,producing terpenoids in microbe by synthetic biology methods has become more and more popular.Inducible promoters and constructive promoters have both advantages and disadvantages. The choice of promoters depends on the specific systems and target compounds.In this research,regulations of heterologous modules by inducible and constructive promoters were studied respectively for the taxadiene synthesis in Saccharomyces cerevisiae.A yeast chassis was firstly constructed after expressing a truncated 3-hydroxyl-3-methylglutaryl-CoA reductase gene(thmgr),endogenous farnesyl diphosphate synthase gene(erg20)under the regulation of tdh3 promoter.After inserting the heterologous module in which ts was regulated by inducible promoter into the genome of chassis,an engineered strain which produced 5.2 mg·L-1 taxadiene was obtained.When the promoter was replaced by constructive one-tdh3p,the yield increased to 11.5 mg·L-1.That indicated the constructive promoter may be more suitable for the taxadiene synthesis system in yeast.After a simple fermentation optimization in shaking flask,the yield increased by 70% to reach 19.5 mg·L-1.Strains regulated by constructive promoters can use glucose as carbon source which was suitable for large scale fermentation in future.
出处 《化工学报》 EI CAS CSCD 北大核心 2013年第11期4167-4174,共8页 CIESC Journal
基金 国家高技术研究发展计划项目(2012AA02A701) 国家重点基础研究发展计划项目(2012CB721105)~~
关键词 紫杉二烯 酵母底盘 功能模块 诱导型启动子 组成型启动子 taxadiene yeast chassis functional module inducible promoter constructive promoter
  • 相关文献

参考文献1

二级参考文献22

  • 1Dueber J E,Wu G C,Malmirchegini G R,Moon T S,Petzold C J,Ullal A V,Prather K L,Keasling J D.Synthetic protein scaffolds provide modular control overmetabolic flux. Nature Biotechnology . 2009
  • 2Tsuruta H,Paddon C J,Lenihan J R,Horning T,AnthonyL C,Regentin R,Keasling J D,Renninger N S,Newman JD.High-level production of amorpha-4,11-diene,aprecursor of the antimalarial agent artemisinin,inEscherichia coli. PLoS One . 2009
  • 3Ajikumar P K,Xiao W H,Tyo K E,Wang Y,Simeon F,Leonard E,Mucha O,Phon T H,Pfeifer B,Stephanopoulos G.Isoprenoid pathway optimization by amultivariate-modular approach for Taxol precursoroverproduction in Escherichia coli. Science . 2010
  • 4Rolli V,Gallwitz M,Wossning T,Flemming A,SchamelW W,Zürn C,Reth M.Amplification of B cell antigenreceptor signaling by a Syk/ITAM positive feedback loop. Mol.Cell . 2002
  • 5Weber W,Schoenmakers R,Keller B,Gitzinger M,GrauT,Daoud-El Baba M,Sander P,Fussenegger M.Asynthetic mammalian gene circuit reveals antituberculosiscompounds. Proceedings of the National Academy of Sciences of the United States of America . 2008
  • 6Lu T K,Collins J J.Dispersing biofilms with engineeredenzymatic bacteriophage. Proceedings of the National Academy of Sciences of the United States of America . 2007
  • 7Lu T K,Collins J J.Engineered bacteriophage targetinggene networks as adjuvants for antibiotic therapy. Proceedings of the National Academy of Sciences of the United States of America . 2009
  • 8Anderson J C,Clarke E J,Arkin A P,Voigt CA.Environmentally controlled invasion of cancer cells byengineered bacteria. Journal of Molecular Biology . 2006
  • 9Li H,Cann A F,Liao J C.Biofuels:biomolecularengineering fundamentals and advances. Rev.Chem.Biomol.Eng . 2010
  • 10Fortman J L,Chhabra S,Mukhopadhyay A,Chou H,LeeT S,Sreen E,Keasling J D.Biofuel alternatives to ethanol:pumping the microbial well. Trends in Biotechnology . 2008

共引文献20

同被引文献51

  • 1Misawa N. Pathway engineering for functional isoprenoids[J]. Curr. Opin. BiotechnoL, 2011, 22 (5) : 627-633.
  • 2Chen F, Tholl D, Bohlmann J, et al. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom[J]. The Plant Journal, 2011, 66 (1): 212-229.
  • 3Van Bogaert I N, Saerens K, De Muynck C, et al. Microbial production and application of sophorolipids[J]. Applied microbiology andBiotechnology, 2007, 76 (1): 23-34.
  • 4Lamacka M, Sajbidor J. Ergosterol determination in Saccharomyces cerevisiae. Comparison of different methods[J]. Biotechnol. Tech., 1997, 11 (10) : 723-725.
  • 5Veen M, Stahl U, Lang C. Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae[J]. FEMS Yeast Res., 2003, 4 (1) : 87-95.
  • 6Lee Adair W, Cafmeyer N. Characterization of the Saccharomyces cerevisiae cis-prenyltransferase required for dolichyl phosphate biosynthesis[J]. Archives of Biochemistry and Biophysics, 1987, 259 (2) : 589-596.
  • 7Bloch K E. Sterol, structure and membrane function[J]. Crit. Rev. Biochem. Mol. Biol., 1983, 14 ( 1 ) : 47-92.
  • 8Zweytick D, Leitner E, Kohlwein S D, et al. Contribution of Arelp and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae[J].Eur. J. Biochem., 2000, 267 (4): 1075-1082.
  • 9Panda T, Devi V A. Regulation and degradation of HMGCo-A reductase[J]. Appl. Microbiol. Biotechnol., 2004, 66 (2) : 143-152.
  • 10Kennedy M A, Barbuch R, Bard M. Transcriptional regulation of the squalene synthase gene ( ERG9 ) in the yeast Saccharomyces cerevisiae[J]. Biochimicaet Biophysica Acta ( BB,4 ) -Gene Structure and Expression, 1999, 1445 (1): 110-122.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部