期刊文献+

一类含非黏滞阻尼的Duffing单边碰撞系统的激变研究 被引量:7

Global analysis of crises in a Duffing vibro-impact oscillator with non-viscously damping
原文传递
导出
摘要 以一类含非黏滞阻尼的Duffing单边碰撞系统为研究对象,运用复合胞坐标系方法,分析了该系统的全局分岔特性.对于非黏滞阻尼模型而言,它与物体运动速度的时间历程相关,能更真实地反映出结构材料的能量耗散现象.研究发现,随着阻尼系数、松弛参数及恢复系数的变化,系统发生两类激变现象:一种是混沌吸引子与其吸引域内的混沌鞍发生碰撞而产生的内部激变,另一种是混沌吸引子与吸引域边界上的周期鞍(混沌鞍)发生碰撞而产生的常规边界激变(混沌边界激变),这两类激变都使得混沌吸引子的形状发生突然改变. In this paper studied is the crises in the Duffing vibro-impact oscillator with non-viscously damping by the composite cell co-ordinate system method. It is assumed that the non-viscously damping depends on the past history of the velocities other than the instantaneous generalized velocities. The energy dissipation behaviors of real structural materials can be preferably represented in the non-viscously damping models. Numerical simulations show that as the damping coefficient or the relaxation parameter or the recovery coefficient is varied, there appear two kinds of crises: one is the interior crisis, which results from the collision between a chaotic attractor and a chaotic saddle on the basin boundary, and the other is the regular/chaotic boundary crisis, which is due to the collision of a chaotic attractor with a periodic/chaotic saddle on its basin boundary. All the crises result in a sudden change in size and shape of the attractor.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第20期60-67,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11172233 10932009 11202160 11302170) 西北工业大学基础研究基金(批准号:JC201266)资助的课题~~
关键词 非黏滞阻尼 Duffing碰撞振动系统 激变 复合胞坐标系方法 non-viscously damping Duffing vibro-impact oscillator crisis the composite cell coordinate system method
  • 相关文献

参考文献25

  • 1Rayleigh J W S 1877 Theory of Sound (Vol.2) (New York: Dover Pub- lications) pp135-216.
  • 2Ruzziconi L, Litak G, Lenci S 2011 J. Vibroeng. 13 2238.
  • 3Rossikhin Y A, Shitikova M V 2010 Appl. Mech. Rev. 63 010801.
  • 4Sieber J, Wagg D J, Adhikari S 2008 Z Sound Vib. 314 1.
  • 5Jin D P, Hu H Y 1999 Adv. Mech. 29 155.
  • 6Ding W C, Xie J H 2005 Adv. Mech. 35 513.
  • 7Lei H, Gan C B, Xie C Y 2010 Eng. Mech. 27 105.
  • 8Ron H W, Wan. X D, Xu W, Fan. T 2008 Acta Phys. Sin. 57 6888.
  • 9Su M B, Rong H W 2011 Chin. Phys. B 20 060501.
  • 10Grebogi C, Ott E, Yorke J A 1983 Physica D 7 181.

同被引文献48

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部