期刊文献+

矩形槽同轴布拉格结构的模式匹配分析方法及实验验证 被引量:3

Mode-matching analytic method of a coaxial Bragg structure corrugated with rectangular ripples and its experimental verification
原文传递
导出
摘要 基于模式匹配法建立了矩形槽同轴布拉格结构的全波耦合分析模型,推导出了不同模式反射率和传输率的计算式,并采用公开报道的实验数据验证了该理论模型.在此基础上就本文理论与其他相关的理论方法进行了比较,发现以前的理论近似模型由于忽略了矩形槽中的消失模而使传输率的频率响应曲线发生偏差.本文建立的理论方法有望为矩形槽同轴布拉格结构的特性研究和工程实践提供一种理论分析手段. Based on the mode-matching method, an analytical model with full-wave coupling is presented for the coaxial Bragg structures corrugated with rectangular ripples, where the expressions of the reflectivity and transmission rate for each involved mode are derived. The validity of the analytical model is examined in terms of a reported experiment, and good agreement between the theoretical results and the experimental measurements is demonstrated. Comparative study is carried out between the present model and the published theoretical results. It is found that the approximate treatment adopted by the previous model leads to notable deviation of the transmission response curve due to the neglect of the evanescent modes excited by rectangular ripples. The analytical method presented in this paper can be expected to provide a useful approach to the characteristic investigation and engineering practice of the coaxial Bragg structures with rectangular ripples.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第20期496-503,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60871023) 国家重点基础研究发展计划(批准号:2013CB834305) 广东省自然科学基金(批准号:S2011010000300) 东莞市高等院校科研机构科技计划(批准号:2011108102011)资助的课题~~
关键词 同轴布拉格结构 矩形波纹 模式匹配法 模式耦合 coaxial Bragg structure rectangular ripples mode-matching method mode coupling
  • 相关文献

参考文献25

  • 1Lu L Y, Li F, Xu M, Wang T, Wu J Y, Zhou L J, Su Y K 2012 IEEE Photon. Tech. Lett. 24 1765.
  • 2Ginzburg N S, Peskov N Y, Sergeev A S, Zaslavsky V Y, Arzhannikov A V, Kalinin P V, Sinitsky S L, Thumm M 2012 J. Appl. Phys. 112 114504.
  • 3Wagner D, Kasparek W, Leuterer F, Monaco F, Munich M, Schutz H, Stange T, Stober J, Thumm M 2011 J. Infrared Millir Terah Waves 32 1424.
  • 4Du C H, Liu P K, Xue Q Z 2010 Chin. Phys. B 19 048703.
  • 5Gao R M, Wu B, Zhang H, Zhu L D, Guo E Chang S J, Wang Q 2009 Acta Phys. Sin. 58 1838.
  • 6Huang M, Wu J, Cni H Y, Qian J Q, Ning Y Q 2012 Chin. Phys. B 21 104207.
  • 7Jin J, Lin S, Song N F 2012 Chin. Phys. B 21 064221.
  • 8Thumm M, Kasparek W, Wagner D, Wien A 2013 IEEE Trans. Antenn. Propag. 61 2449.
  • 9Liu Y G, Che F L, Jia Z A, Fu H W, Wang H L, Shao M 2013 Acta Phys. Sin. 62 104218.
  • 10Denisov G G, Lukovnikov D A, Samsonov S V 1995 Int. J. Infrared Millim. Waves 16 745.

同被引文献36

  • 1李克勤,姜翠香.吉布斯现象的MATLAB实现[J].三峡大学学报(自然科学版),2006,28(3):269-270. 被引量:5
  • 2Tao Jin,Yu Xuechao,Hu Bin,et al.Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth[J].Optics Letters,2014,39(2):271-274.
  • 3Bratman V L,Denisov G G,Ginzburg N S,et al.FEL’s with Bragg reflection resonators:Cyclotron autoresonance masers vesus ubitrons[J].IEEE J Quant Electron,1983,19(3):282-293.
  • 4Ginzburg N S,Peskov N Y,Sergeev A S,et al.High selective two-dimensional Bragg resonators of planar geometry:Theoretical,computational,and experimental study[J].Journal of Applied Physics,2012,112:114504.
  • 5Wagner D,Kasparek W,Leuterer F,et al.Bragg reflection band stop filter for ECE on Wega[J].Journal of Infrared,Millimeter,and Terahertz Waves,2011,32(12):1424-1433.
  • 6Chong C K,McDermott D B,Razeghi M M,et al.Bragg reflectors[J].IEEE Transactions on Plasma Science,1992,20(3):393-402.
  • 7Barroso J J,Castro J P,Leite J P,et al.Design and test of a 6.7 GHz coaxial Bragg reflector[J].IEEE Transactions on Plasma Science,2008,36(2):481-487.
  • 8Konoplev I V,MacGrane P,Phelps A D R,et al.Observation of photonic band-gap control in one-dimensional Bragg structures[J].Appl Phys Lett,2005,87:121104.
  • 9Lai Yingxin,Zhang Shichang,Yang Lei.A method of suppressing mode competition in a coaxial localized-defect Bragg resonator operating in a higher-order mode[J].Phys Plasmas,2011,18:064506.
  • 10Lai Yingxin,Yang Lei,Zhang Shichang.Control of output mode and passband location of an overmoded defected coaxial Bragg structure[J].International Journal of Applied Electromagnetics and Mechanics,2013,41(2):199-206.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部