期刊文献+

基于图像欧氏距离的高光谱图像流形降维算法 被引量:18

Image Euclidean distance-based manifold dimensionality reduction algorithm for hyperspectral imagery
下载PDF
导出
摘要 提出两种基于图像欧氏距离的非线性降维方法.该方法利用高光谱图像物理特性,将图像欧氏距离引入到传统的流形降维算法中.与其它应用于高光谱图像的降维算法相比,该算法具有诸多优点.图像欧氏距离的引入,在考虑高光谱图像本身的空间关系的同时,很好地保持了数据点之间的局部特性,可以实现有效地去除原始数据集光谱维和空间维的冗余信息.实际高光谱数据的实验结果表明,该算法应用于高光谱图像分类时,与其它常见的方法相比具有更高的分类精度. Two nonlinear dimensionality reduction methods were proposed based on image Euclidean distance. Consider- ing the physical characters of hyperspectral imagery, the methods introduced image Euclidean distance into traditional manifold dimensionality reduction. Compared with other methods, our methods have several advantages. The introduc- tion of image Euclidean distance not only considers hyperspectral image' s spatial relationship, but also preserves the lo- cal feature of datasets well. Thus the proposed methods can discard efficiently the redundant information from both the spectral and spatial dimensions. The experiment results demonstrated that the proposed methods have~ higher classification accuracy than other methods when applied to hyperspectral image classification.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2013年第5期450-455,共6页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金(No.61071134) 上海市教委科研创新项目(No.13ZZ005) 高等学校博士学科点专项科研基金(20110071110018)~~
关键词 高光谱遥感图像 非线性降维 图像欧氏距离 分类 hyperspectral imagery nonlinear dimensional reduction image Euclidean distance classification
  • 相关文献

参考文献12

  • 1Chang C I. Hyperspectral imaging: techniques for spectral detection and classification [ M ]. New York: Plenum, 2003.
  • 2Jolliffe L T. Principal Component Analysis[ M]. Springer, 2nd ed. 2002.
  • 3Hyvarinen, Karhunen J, Oja E. Independent Component Analysis [M]. New York: Wiley, 2001.
  • 4Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection [J]. IEEE Trans. on Pattern Analysis and Ma- chine Intelligence, 1997,19 (7) :711 - 720.
  • 5Mtiller K R, Mika S, R? tsch G, et. al. An introduction to kernel-based learning algorithms [ J ]. IEEE Trans. on Neural Networks, 2001, 12(2):181-201.
  • 6Sam T R , Lawrence K S. Nonlinear Dimensionality Re- duction by Locally Linear Embedding [ J ]. Science, 2000, 290(5500) : 2323 -2326.
  • 7Tenenbaum J. B, de Silva. V, Langford J C. A global geo- metric framework for nonlinear dimensionality reduction [ J]. Science, 2000, 290(5500) :2319 - 2323.
  • 8Bachmann C M, Ainsworth T L, Fusina R A. Improved Manifold Coordinate Representations of Large-Scale Hyper- spectral Scenes [ J ]. IEEE Trans. on Geosci. Remote Sens. , 2006, 44(10) :2786 - 2802.
  • 9Wang L, Zhang Y, Feng J. On the Euclidean distance of images [ J ]. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2005, 27( 8 ) : 1334 - 1339.
  • 10Melgani F, Bruzzone L. Classification of hyperspectral re- mote sensing images with support vector machines [ J ]. IEEE Trans. on Geosci. Remote Sens. , 2004, 42 ( 8 ) : 1778 - 1790.

同被引文献267

引证文献18

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部