期刊文献+

带有变指数的非线性抛物方程的爆破

Blow-up for a Nonlinear Parabolic Equation with a Variable Exponent
下载PDF
导出
摘要 考虑了带有变指数的非线性退化抛物方程非负解的爆破行为.使用特征函数方法和不等式技巧,得到了其非线性问题非负解在有限时刻爆破的充分条件. The blow - up behavior of nonnegative solutions is studied to the following nonlinear degenerate parabolic equation with a variable exponent. By using the eigenfunction method and inequality technique on it,the sufficient condition for blow - up nonnegative solutions of the equation with homogeneous dir/chlet boundary condition is obtained.
作者 唐树乔
出处 《佳木斯大学学报(自然科学版)》 CAS 2013年第5期777-778,780,共3页 Journal of Jiamusi University:Natural Science Edition
基金 安徽省教育厅自然科学课题(KJ2011Z258 KJ2013Z217) 亳州师专科研课题(BZSZKYXM201111)
关键词 变指数 退化抛物方程 爆破 variable exponent degenerate parabolic equation blow - up.
  • 相关文献

参考文献14

  • 1Fujita H. On the Blowing up Solutions of the Cauchy Problem for [J]. Fac. Sci. Univ. Tokyo. Sect. A. Math,1966:105 - 113.
  • 2Aronson D J. Weinberger H F. Multidimensional Nonlinear Diffu- sion Arising in Population Genetics [ J ]. Advances in Math 30, 1978:33 -76.
  • 3Hayakawa K. On Nonexistence of Global Solutions of Some Semilinear Parabolic Equations[ J]. Proe. Japan Acad, 1963, 49:503 - 525.
  • 4Kobayashi K,Siaro T, Tanaka H. On the Blowing up Problem for Semilinear Heat Equations [ J ]. Math. Soc. Japen, 1977,29 : 407 -424.
  • 5Weissler F B. Existence and Nonexistence of Global Solutions for Semilinear Heat Equation[ J]. Israel J. Math, 1981,38:29 -40.
  • 6Weler P. On the Critical Exponent for Reaction-Diffusion Equa- tions. Arch. Rational Mech, 1990,109:63 - 71.
  • 7Weissler F B. An Blow - Up Estimate for a Nonlinear Heat Equa- tion[ J]. Comm. Pure Appl. Math, 1985,38:292 - 295.
  • 8N. Mizognchi, E. Yanagida. Critical Exponents ior the Blowup of Solutions with Sign Changes in a Semilinear Parabolic Equa- tion[J]. Ⅱ. J. Differential Equations,1998,145:295-331.
  • 9S.N. Antontsev, S.I. Shmarev. Existence and Uniqueness of Solutions of Degenerate Parabolic Equations with Variable Expo- nents of Nonlinearity[J]. J. Math. SOi, 150 (2008) :2289 - 2301.
  • 10S.N. Antontsev, S.I. Shmarev. A Model Porous Medium E- quation with Variable Exponent Nonlinearity: Existence, U- niqueness and Localization Properties of Solutions[ J]. Nonlin- ear Anal,60 (2005) :515 - 545.

二级参考文献13

  • 1Anderson J R. Local existence and uniqueness of solutions of degenerate parabolic equations[J].Commun Partial Differential Equations, 1991,16( 1 ):105-143.
  • 2Pao C V. Nonlinear Parabolic and Elliptic Equations[M] .New York:Plenum Press, 1992.
  • 3Cantrell R S, Consner C. Diffusive logistic equations with indefinite weights :population models in disrupted environments Ⅱ [J] .SIAM of Math Anal, 1991,22(4) : 1043-1064.
  • 4Diaz J I, Kemner R. On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium[ J]. J Differential Equations, 1987,69(3) :368-403.
  • 5Anderson J R, Deng K. Global existence for degenerate parabolic equations with a non-local forcing[J]. Math Mech Appt Sci, 1997,20( 13 ) : 1069- 1087.
  • 6Furter J, Grinfeld M. Local vs. non-local interactions in population dynamics[J]. J Math Biology,1989,27( 1 ) :65-80.
  • 7Chadam J M, Peirce A, Yin H M. The blow-up property of solutions to some diffusion equations with localized nonlinear reactions[J]. J Math Anal Appl , 1992,169(2) :313-328.
  • 8Souplet Ph. Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source[ J] .J Differental Equations, 1999,153(2) :374-406.
  • 9Souplet Ph. Blow up in nonlocal reaction-diffuson equations [ J ]. SIAM J Math Anal, 1998,29 (6) :1301-1334.
  • 10WANG Ming-xin, WANG Yuan-ming. Properties of positive solutions for non-local reactioa-diffiusion problems[ J]. Math Mech Appl Sci, 1996,19(4 ) : 1141-1156.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部