期刊文献+

MRI大脑图像灰质与白质的分割 被引量:1

Segmentation for brain grey matter and white matter of a MRI brain image
下载PDF
导出
摘要 目的利用小波变换对MRI大脑图像进行多尺度下的自动阈值处理,实现大脑灰质与白质的分割。方法首先将MRI大脑图像去噪,接着进行预分割以去除非脑组织,余下的脑实质部分选择sym4小波函数对其一维直方图信号进行不同层次的小波系数的分解,实现多尺度下的自动阈值分割,从而提取脑实质中的灰质和白质。经过图像的后处理,以错误分割的百分比作为分割结果的评判标准。结果该方法能正确分离白质和灰质,对多幅MRI大脑图像重复实验,计算得到的像素差异百分比不超过3.7%,错误分割的百分比在允许范围内。结论该方法对于MRI大脑的灰白质分割具有一定的有效性,且操作简单、快速,分割效果理想。但由于小波阈值分割法的单一性,分割过程仍有人工干涉,分割结果也存在一定的过分割现象,应在此方法的基础上进一步研究和完善。 Objective To realize the segmentation of brain grey matter and white matter of a MRI brain image accurately by means of wavelet transformation which could automatically gain the threshold with multi-scale decomposition. Methods Firstly,The MRI brain image was denoised and pre-segmented to remove non- brain tissue. Then onedimensional histogram signal of the rest brain tissue was decomposed by different levels of wavelet coefficients to realize automatically threshold segmentation under multi-scale, thus the brain grey matter and white matter were extracted. Finally, the results were evaluated by the percentage of error segmentation after the post-treatment. Results The expriment results showed that brain grey matter and white matter were correctly segmented, and the max percentage of error segmentation was 3.7% ,which was within the allowable range. Conclusions The method is effective, easy and fast in segmentation for brain grey matter and white matter of a MRI image. However, due to the simplicity of the threshold segmentation with wavelet transformation, the whole process does not work without human intervention and there is some over-segmentation in the results. Further study and improvement should be made based on this method.
作者 陈亮亮
机构地区 温州医科大学
出处 《北京生物医学工程》 2013年第5期519-523,共5页 Beijing Biomedical Engineering
关键词 MRI大脑图像 小波变换 大脑灰质 大脑白质 阈值分割 多尺度 MRI brain image wavelet transform brain grey matter brain white matter presegmenttion multi-scale
  • 相关文献

参考文献8

  • 1Lipton Richard J. DNA Solution of Hard Computational Problems [Jl. Science,1995, 268 (4) :542-545.
  • 2Pemmaraju S, Mitra S, Shieh Y, et al. Multiresolution waveletdecomposition and neur o-fuzzy clustering for segmentation of radiographic images [ J ] Proceedings of the Eighth Annual IEEE Symposium on Computer-Based Med-I cal Systems (CBMS. 95). 1995:142-149.
  • 3Olivo JC. Automatic threshold selection using the Wavelet transform. CVGIP-GMIP, 1994,56 ( 3 ) :205-218.
  • 4邢凡,樊瑜瑾.基于小波变换多阈值彩色铁谱图像的分割方法[J].润滑与密封,2008,33(7):69-72. 被引量:5
  • 5Rajaqakse JC. Statistical approach to segmentation of single- channel cerebral M R images [ J]. IEEE Trans Med Imaging, 1997,16 (2) :176-186.
  • 6聂生东,章鲁,顾顺德,陈瑛,庄天戈.磁共振图像的分割[J].国外医学(生物医学工程分册),1999,22(6):349-355. 被引量:4
  • 7Reddick WE, Glass JO, Cook EN, et al. Automated segmentation and classification of muhi spectral magnetic images using artificia neural networks[ J]. IEEE Trans Med Imaging, 1997,16 (6): 911-918.
  • 8Li Bai, Yihui Liu, Dorothee Auer, Paul Morgan. Automatic Segmentation of Putamen from Brain MRI [ J]. Technology & Automation,2001,19 ( 8 ) :679-698.

二级参考文献2

共引文献7

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部