期刊文献+

风速时间序列混合预测方法研究 被引量:3

Study on hybrid prediction method of wind speed series
下载PDF
导出
摘要 为改善具有混沌特性的风速时间序列的预测性能,提出一种混合预测方法,利用相空间重构理论实现风速时间序列的重构,通过优化周期轨道函数求取时间序列中蕴含的不稳定周期,利用前一不稳定周期的风速数据对未来风速进行预测.采用神经网络对同一风速序列再进行预测分析,将2种预测结果采用加权求和的方式进行融合,实现风速序列的混合预测,并采用混沌优化算法确定加权参数.仿真实验结果表明:混沌不稳定周期方法能够改善具有混沌特性风速序列的预测性能,混合预测方法能够进一步提高风速序列的预测效果,预测性能优于单一预测方法. In order to improve the prediction performance of wind speed series with chaotic characteristic, a hybrid prediction method is proposed. The wind speed series are reconstructed by phase space reconstruction theory. The unstable period contained in wind speed series can be resolved by optimizing the periodic orbit function. The future data of wind speed can be predicted by the previous unstable period. The neural network is applied to predict the same wind speed series. A hybrid prediction is completed by fusing the prediction results obtained by the unstable period method and neural network. The fusion parameters can be determined by chaos optimization algorithm. Simulation results show that the unstable period method has good prediction performance, and the hybrid method can get better prediction performance than each one.
出处 《天津工业大学学报》 CAS 北大核心 2013年第5期47-50,56,共5页 Journal of Tiangong University
基金 国家自然科学基金项目(61203302)
关键词 风速时间序列 风速预测 混沌特性 不稳定周期 BP网络 混合预测 wind speed series wind speed prediction chaos characteristics unstable period BP neural network hybrid prediction
  • 相关文献

参考文献14

二级参考文献112

共引文献587

同被引文献38

  • 1陈铿,韩伯棠.混沌时间序列分析中的相空间重构技术综述[J].计算机科学,2005,32(4):67-70. 被引量:86
  • 2马千里,郑启伦,彭宏,钟谭卫.基于相空间重构理论与递归神经网络相结合的股票短期预测方法[J].计算机应用研究,2007,24(4):239-241. 被引量:5
  • 3龚云帆,徐健学.混沌信号与噪声[J].信号处理,1997,13(2):112-118. 被引量:22
  • 4BIGDELI N, AFSHAR K, GAZAFROUDI A S, et al. A com- parative study of optimal hybrid methods for wind power pre- diction in wind farm of Alberta, Canada[J]. Renewable and Sustainable Energy Reviews, 2013,27( 11 ) : 20-29.
  • 5LIU D, NIU D Z, WANG H, et al. Short-term wind speed forecasting using wavelet transform and support vector ma-chines optimized by genetic algorithm[J]. Renewable Energy, 2014,62(2) :592-597.
  • 6HUI L, TIAN H Q, PAN D F, et al. Forecasting models for wind speed using wavelet, wavelet packet, time series and ar- tificial neural networks[J]. Applied Energy, 2013,107 (7) : 191-208.
  • 7GUO Z H, ZHAO W G, LU H Y, et al. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model[J]. Renewable Energy, 2014,37( 1 ) : 241-249.
  • 8LIU Hui, TIAN Hongqi, LI Yanfei. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction[J]. Applied Energy, 2012,98 ( 12 ) : 415-424.
  • 9LIU Xiangdong, XIU Chunbo. A novel hysteretic chaotic neural network and its application[J]. Neurocomputing, 2007,70( 13/ 14/15 ) : 2 561-2 565.
  • 10LIU Xiangdong, XIU Chunbo. Hysteresis modeling based on the hysteretic chaotic neural network[J]. Neural Computing and Applications, 2008,17 (5/6) : 579-583.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部