摘要
证明了在一定条件下,不等式|λ_1p_1~2+λ_2p_2~2+λ_3p_3~2+λ_4p_4~2+μ_12^(m_1)+…+μ_s2^(m_s)+(?)|<η关于素数p1,p2,p3,p4和正整数m1,…,m_s有无穷多解,改进了之前的结果.
The authors prove that under certain conditions, the inequality |λ1p1^2+λ2p2^2+λ3p3^2+λ4p4^2+μ12^m1+…+μs2m^sa+ |〈η with primes p1, p2,p3,p4 and positive integers m1,... , m8 has infinitely many solutions. This gives an improvement of the former results.
出处
《数学年刊(A辑)》
CSCD
北大核心
2013年第5期599-608,共10页
Chinese Annals of Mathematics
基金
教育部博士点基金(No.20120131120075)的资助