期刊文献+

分式噪声驱动的一类随机偏微分方程的非参数估计

Nonparametric Inference for a Class of SPDEs Driven by Fractional Noises
下载PDF
导出
摘要 研究了一类由分式噪声所驱动的随机偏微分方程的统计推断.先构造了偏微分算子时间相依系数的非参数估计量,然后得到了该估计在最大值范数下的收敛率和渐近正态性.该收敛率由系数的平滑参数和分式噪声的Hurst参数共同决定. The nonparametric inference for a class of stochastic partial differential equations driven by fractional noises is investigated. The authors construct a non-parametric estimator of the time-dependent coefficient of the partial differential operator. The convergence in the sup-norm and asymptotic normality of the estimator are established. The rate of convergence is determined by both the smoothness of the coefficient and the Hurst parameter of the fractional noise.
出处 《数学年刊(A辑)》 CSCD 北大核心 2013年第5期627-642,共16页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.11101083) 对外经济贸易大学学术创新团队资助项目(数量经济学理论与应用创新团队)(No.CXTD4-01)的资助
关键词 分式噪声 非参数统计 随机偏微分方程 Fractional noise, Nonparametric inference, Stochastic partial differential equation
  • 相关文献

参考文献12

  • 1Da Prato G, Zabczyk Cambridge University J. Stochastic equations in infinite dimensions [M]. Cambridge Press, 1992.
  • 2Prakasa Rao B L S. Statistical inference for York: London and Oxford University Perss diffusion type processes [M]. Arnold, New 1999.
  • 3Huebner M, Rozovskii B L. On asymptotic properties of maximum likelihood estimators for parabolic stochastic PDEs [J]. Prob Th Rel Fields, 1995, 103:143-163.
  • 4Huebner M, Lototsky S. Asymptotic analysis of a kernel estimator for parabolic SPDE's with time-dependent coefficients [J]. Ann Appl Prob, 2000, 10:1246-1258.
  • 5Prakasa Rao B L S. Nonparametric inference for a class of stochastic partial differential equations II [J]. Star Infer Stoch Proc, 2001, 4:41-52.
  • 6Dai W, Heyde C C. ItS's formula with respect to fractional Brownian motion and its applications [J]. J Appl Math Stoch Anal, 1996, 9:439-448.
  • 7Duncan T E, Hu Y Z, Pasik-Duncan B. Stochastic calculus for fractional Brownian motion I. theory [J]. SIAM J Control Optim, 2000, 38:582-612.
  • 8Lin S J. Stochastic analysis of fractional Brownian motions [J]. Stoch Stoch Rep, 1995, 55:121-140.
  • 9Watanabe S. Stochastic differential equation and Malliavin calculus [M]. Tata Institute of Fundamental Research, New York: Springer-Verlag, 1979.
  • 10Nualart D, Ouknine Y. Regularizing diffrential equations by fractional noise [J]. Stoch Proc and Their Appl, 2002, 102:103-116.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部