摘要
研究了一类由分式噪声所驱动的随机偏微分方程的统计推断.先构造了偏微分算子时间相依系数的非参数估计量,然后得到了该估计在最大值范数下的收敛率和渐近正态性.该收敛率由系数的平滑参数和分式噪声的Hurst参数共同决定.
The nonparametric inference for a class of stochastic partial differential equations driven by fractional noises is investigated. The authors construct a non-parametric estimator of the time-dependent coefficient of the partial differential operator. The convergence in the sup-norm and asymptotic normality of the estimator are established. The rate of convergence is determined by both the smoothness of the coefficient and the Hurst parameter of the fractional noise.
出处
《数学年刊(A辑)》
CSCD
北大核心
2013年第5期627-642,共16页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.11101083)
对外经济贸易大学学术创新团队资助项目(数量经济学理论与应用创新团队)(No.CXTD4-01)的资助
关键词
分式噪声
非参数统计
随机偏微分方程
Fractional noise, Nonparametric inference, Stochastic partial differential equation