摘要
In this paper, by means of the network equation and generalized dimensionless Floquet-Bloch theorem, we study the influences of the number of connected waveguide segments (NCWS) between adjacent nodes and the matching ratio of waveguide length (MRWL) on the photonic bands generated by quadrangular multiconnected networks (QMNs), and obtain a series of formulae. It is found that multicombining networks (MCNs) and repetitive combining networks (RCNs) are equivalent to each other and they can all be simplified into the simplest fundamental combining systems. It would be useful for adjusting the number, widths, and positions of photonic bands, and would possess potential applications for the designing of all-optical devices and photonic network devices.
In this paper, by means of the network equation and generalized dimensionless Floquet-Bloch theorem, we study the influences of the number of connected waveguide segments (NCWS) between adjacent nodes and the matching ratio of waveguide length (MRWL) on the photonic bands generated by quadrangular multiconnected networks (QMNs), and obtain a series of formulae. It is found that multicombining networks (MCNs) and repetitive combining networks (RCNs) are equivalent to each other and they can all be simplified into the simplest fundamental combining systems. It would be useful for adjusting the number, widths, and positions of photonic bands, and would possess potential applications for the designing of all-optical devices and photonic network devices.
基金
Project supported by the National Natural Science Foundation of China(Grant No.10974061)