期刊文献+

Electric field modulation technique for high-voltage AlGaN/GaN Schottky barrier diodes 被引量:1

Electric field modulation technique for high-voltage AlGaN/GaN Schottky barrier diodes
下载PDF
导出
摘要 A novel structure of AIGaN/GaN Schottky barrier diode (SBD) featuring electric field optimization techniques of anode-connected-field-plate (AFP) and magnesium-doped p-type buried layer under the two-dimensional electron gas (2DEG) channel is proposed. In comparison with conventional A1GaN/GaN SBDs, the magnesium-doped p-type buried layer in the proposed structure can provide holes that can help to deplete the surface 2DEG. As a result, surface field strength around the electrode edges is significantly suppressed and the electric field along the channel is distributed more evenly. Through 2D numerical analysis, the AFP parameters (field plate length, LAFP, and field plate height, TAFP) and p-type buried layer parameters (p-type layer concentration, Np, and p-type layer thickness, Tp) are optimized to achieve a three-equal-peak surface channel field distribution under exact charge balance conditions. A novel structure with a total drift region length of 10.5 μm and a magnesium-doped p-type concentration of 1 × 10^17 cm 3 achieves a high breakdown voltage (VB) of 1.8 kV, showing 5 times improvement compared with the conventional SBD with the same device dimension. A novel structure of AIGaN/GaN Schottky barrier diode (SBD) featuring electric field optimization techniques of anode-connected-field-plate (AFP) and magnesium-doped p-type buried layer under the two-dimensional electron gas (2DEG) channel is proposed. In comparison with conventional A1GaN/GaN SBDs, the magnesium-doped p-type buried layer in the proposed structure can provide holes that can help to deplete the surface 2DEG. As a result, surface field strength around the electrode edges is significantly suppressed and the electric field along the channel is distributed more evenly. Through 2D numerical analysis, the AFP parameters (field plate length, LAFP, and field plate height, TAFP) and p-type buried layer parameters (p-type layer concentration, Np, and p-type layer thickness, Tp) are optimized to achieve a three-equal-peak surface channel field distribution under exact charge balance conditions. A novel structure with a total drift region length of 10.5 μm and a magnesium-doped p-type concentration of 1 × 10^17 cm 3 achieves a high breakdown voltage (VB) of 1.8 kV, showing 5 times improvement compared with the conventional SBD with the same device dimension.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期406-411,共6页 中国物理B(英文版)
基金 Project supported by the Science Foundation of the Ministry of Education of China (Grant No.20100101110056) the Natural Science Foundation of Zhejiang Province of China for Distinguished Young Scholars (Grant No.R1100468)
关键词 gallium nitride high voltage SBD field plate magnesium buried layer gallium nitride, high voltage SBD, field plate, magnesium buried layer
  • 相关文献

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部