期刊文献+

The effects of strain and surface roughness scattering on the quasi-ballistic characteristics of a Ge nanowire p-channel field-effect transistor

The effects of strain and surface roughness scattering on the quasi-ballistic characteristics of a Ge nanowire p-channel field-effect transistor
下载PDF
导出
摘要 The effects of strain and surface roughness scattering on the quasi-ballistic hole transport in a strained gate-all-around germanium nanowire p-channel field-effect transistor (pFET) are investigated in this work. The valence subbands are shifted up and warped more parabolically by the influence of HfO2 due to the lattice mismatch. However, the boundary force only shifts the subbands downwards and has little effect on the reshaping of bands. Strain induced by HfO2 increases both the hole mobility and ON-current (/ON), but has little effect on the hole mobility. The/ON is degraded by the surface roughness scattering in both strained and unstrained devices. The effects of strain and surface roughness scattering on the quasi-ballistic hole transport in a strained gate-all-around germanium nanowire p-channel field-effect transistor (pFET) are investigated in this work. The valence subbands are shifted up and warped more parabolically by the influence of HfO2 due to the lattice mismatch. However, the boundary force only shifts the subbands downwards and has little effect on the reshaping of bands. Strain induced by HfO2 increases both the hole mobility and ON-current (/ON), but has little effect on the hole mobility. The/ON is degraded by the surface roughness scattering in both strained and unstrained devices.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期469-473,共5页 中国物理B(英文版)
基金 Project supported by the National Key Basic Research Program,China (Grant Nos.2011CBA00604 and 2009ZX02305-003)
关键词 NANOWIRE strain surface roughness scattering quasi-ballistic nanowire, strain, surface roughness scattering, quasi-ballistic
  • 相关文献

参考文献25

  • 1Kuhn K J 2012 IEEE Trans. Electron Dev. 59 1813.
  • 2Lee M L, Leitz C W, Cheng Z, Pitera A J, Langdo T, Currie M T, Taraschi G, Fitzgerald E A and Antoniadis D A 2005 Appl. Phys. Leu. 793344.
  • 3Wang D W, Wang Q, Javey A, Tu R, Dai H J, Kim H, Mclntyre P C, Krishnamohan T and Saraswat K C 2003 Appl. Phys. Leu. 83 2432.
  • 4Radosavljevic M, Dewey G, Basu D, Boardman J, Chu-Kung B, Faste?nau J M, Kabehie S, Kavalieros J, Le V, Liu W K, Lubyshev D, Metz M, Millard K, Mukherjee N, Pan L, Pillarisetty R, Rachmady W, Shah U, Then H Wand Chau R 2011 International Electron Devices Meet?ing, December 5-7, 2011, Washington DC, USA, p. 33.1.1.
  • 5Yoshida N, Fu X, Xu K, Lei Y, Yang H, Sun S, Chen H, Darlak A, Donohoe R, Lazik C, Jakkaraju R, Noori A, Hung S, Peidous I, Chang C and Brand A 2012 Symposium on VLSI Technology and Circuits, June 12-15,2012, Honolulu, Hawaii, USA, p. 81.
  • 6Wang D, Wang Q, Javey A, Tu R, Dai H, Kim H, McIntyre P C, Krish?namohan T and Saraswat K C 2003 Appl. Phys. Leu. 83 2432.
  • 7Xu H, Liu X, Du G, Fan C, Jin R, Han R and Kang J 2011 IEEE Trans. Nanotechnol. 10 1126.
  • 8Poli S, Pala M G, Poiroux T, Deleonibus Sand Baccarani G 20081EEE Trans. Electron Dev. 55 2968.
  • 9Xu H H, Liu X Y, He Y H, Fan C, Du G, Sun A D, Han R Q and Kang J F 2010 Chin. Phys. B 19014601.
  • 10Sondergaard N, He Y, Fan C, Han R Q, Guhr T and Xu H Q 2009 J. Vac. Sci. Technol. B 27 827.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部