期刊文献+

DBSCAN算法在高性能计算中心用户分类的应用研究 被引量:2

Application Research of DBSCAN Algorithm Based on High-Performance Computing Center Users Classification
下载PDF
导出
摘要 为提高集群资源使用效率,管理员需要对用户进行分类,从而对不同用户提出资源使用策略。DBSCAN(Density Based Spatial Clustering of Applications with Noise)聚类算法可对用户进行分类,但对初始参数敏感。为此,提出改进算法,首先将密度进行层次划分,由此得出各层次的密度阈值,在每种阈值下采用DBSCAN算法,解决全局参数问题。在此基础上,创新地使用一个直接可达距离排序队列,将排序信息作为可变参数,减小初始参数对结果的影响。通过高性能计算中心用户数据的实例验证了其可行性。实验结果表明,改进后的算法提高了用户分类的准确性和全面性。 To enhance service efficiency on cluster resource,administrator needs to make classification of users,and provide various strategies on resource utilization to different users.DBSCAN(Density Based Spatial Clustering of Applications with Noise) algorithm can achieve users' classification,but the initial parameters are very sensitive.The improved algorithm classifies the level of density firstly,then gets the densitythreshold of each level,and uses DBSCAN under each threshold which solves the problem of global parameters.It uses a sorted queue of directly accessible distance as an innovation,makes the sorting information as variable parameter to decrease the influence of initial parameter.The algorithm has verified its feasibility through example data of HPC users.The experimental result demonstrates that this improved algorithm can achieve a more accurate and comprehensive user classification.
出处 《吉林大学学报(信息科学版)》 CAS 2013年第5期528-534,共7页 Journal of Jilin University(Information Science Edition)
基金 大学生创新实验国家级基金资助项目(2011A53101)
关键词 聚类分析 DBSCAN算法 高性能计算中心 用户分类 数据挖掘 clustering analysis density based spatial clustering of applications with noise(DBSCAN) high performance computing center users classification data mining
  • 相关文献

参考文献12

二级参考文献87

共引文献312

同被引文献30

  • 1ZHONG DengHua,CUI Bo,LIU DongHai,TONG DaWei.Theoretical research on construction quality real-time monitoring and system integration of core rockfill dam[J].Science China(Technological Sciences),2009,52(11):3406-3412. 被引量:61
  • 2许雪燕.模糊综合评价模型的研究及应用[D].成都:西南石油大学,2011.
  • 3朱扬勇,熊赟.DNA序列数据挖掘技术[J].软件学报,2007,18(11):2766-2781. 被引量:37
  • 4Ertoz L, Steinbach M, Kumar V. Fiding Clusters of Different Sizes, Shapes, and Densities in Noise, High Dimensional Data ER. Philadelphia: SIAM, 2003.
  • 5Ester M, Kriegel H P, Sander J, et al. A Density-Based Algorithm for Discovering Cluster in Large Spatial Databases with Noise E C//Proeeeding the 2nd International Conference on Knowledge Discovery and Data Mining. Palo Alto, USA. AAAI, 1996. 226-231.
  • 6Kisilevieh S, Mansmann F, Keim D. P-DBSCAN: A Density Based Clustering Algorithm for Exploration and Analysis of Attractive Areas Using Collections of Geo-Tagged Photos -C//Proeeedings of the 1st International Conference and Exhibition on Computing for Geospatial Research Application. New York: ACM, 2010 38.
  • 7Kieu L M, Bhaskar A, Chung E. Transit Passenger Segmentation Using Travel Regularity Mined from Smart Card Transactions Data [C]//Transportation Research Board 93rd Annual Meeting. Brisbane: [s. n. ], 2014: 12-16.
  • 8Verkasalo H, L6pez-Nicolfis C, Molina-Castillo F J, et al. Analysis of Users and Non-users of Smartphone Applications [J]. Telematies and Informatics, 2010, 27(3). 242-255.
  • 9Hasan T, Hansen J H L. Acoustic Factor Analysis for Robust Speaker Verification I-J. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(4). 842-853.
  • 10Hall M, Frank E, Holmes G, et al. The WEKA Data Mining Software. An Update EJ3. ACM SIGKDD Explorations, 2009, 11(1): 10-18.

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部