期刊文献+

差分RBF神经网络的预测算法及其应用 被引量:6

A PREDICTIVE ALGORITHM BASED ON DIFFERENCE RADIAL BASIS FUNCTION NEURAL NETWORKS MODEL FOR TIME SERIES AND ITS APPLICATION
下载PDF
导出
摘要 针对 RBF( Radial Basis Function)神经网络处理非平稳时间序列的不足 ,本文提出一种修正的差分 RBF神经网络结构 ,并给出相应的预测算法 ,将其应用于金融领域 ,对上证指数进行预测 ,结果表明其性能优于传统的 Because the performance of the classical radial basis function (RBF) predictor for non-stationary time series is less satisfactory, a modified structure called Difference RBF(DRBF) and its predictive algorithm are presented. Through the application to the prediction of the Shanghai stock index, the simulation results confirm the superior performance of the DRBF over the classical RBF, and the former is more fit for the non stationary time series problems.
出处 《信息与控制》 CSCD 北大核心 2000年第5期421-424,共4页 Information and Control
基金 "973"国家重点基础研究基金资助课题(G1998030413)
关键词 差分RBF神经网络 时间序列 金融预测 difference RBF neural networks time series financial prediction
  • 相关文献

参考文献3

  • 1顾岚(译),时间序列分析.预测与控制论,1997年
  • 2徐秉铮,神经网络理论与应用,1994年
  • 3Chen S,IEEE Trans Neural Networks,1991年,2卷,1期,302页

同被引文献44

  • 1韩志刚.无模型控制方法在化肥生产中的应用[J].控制理论与应用,2004,21(6):858-863. 被引量:18
  • 2尹申明,陆建东,雷鸣,杨叔子.自适应神经网络学习方法研究[J].计算机研究与发展,1994,31(6):24-29. 被引量:14
  • 3Li Xiang,J Forecasting,1999年,18卷,181页
  • 4陈国良,遗传算法及其应用,1996年
  • 5Joao C.Teixeira,Antonio J.Rodrigues.An applied study on recursive estimation methods,neural networks and forecasting[J].European Journal of Operational Research,1997,101:406-417.
  • 6An-Sing Chen,Mark T.Leung,Hazem Daouk,Application of neural networks to an emerging financial market:Forecasting and trading the Taiwan Stock Index[J].Computers & Operations Research,2003,30:901-923.
  • 7William Leigh,Russell Purvis,James M.Ragusa.Forecasting the NYSE composite index with technical analysis,pattern recognizer,neural network,and genetic algorithm:A case study in romantic decision support[J].Decision Support Systems,2002,32:361-377.
  • 8Philip Hans Franses,Hendrik Ghijsels.Additive outliers,GARCH and forecasting volatility[J].International Journal of Forecasting,1999,15:1-9.
  • 9Peter Verhoeven,Berndt Pilgram,Michael McAleer,Alistair Mees.Non-linear modelling and forecasting of S&P 500 volatility[J].Mathematics and Computers in Simulation,2002,59:233-241.
  • 10Fernando Fernandez-Rodrguez,Simon Sosvilla-Rivero,Mara Dolores Garca-Artiles.Dancing with bulls and bears:Nearest-neighbour forecasts for the Nikkei index[J].Japan and the World Economy,1999,11:395-413.

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部