期刊文献+

基于机器学习的商品本体细粒度语义知识获取 被引量:1

Acquisition of Fine-granularity Semantic Knowledge of Commodity Ontology Using Machine Learning Methods
下载PDF
导出
摘要 针对电子商务应用中商品本体模型粒度过粗和细粒度语义知识匮乏的问题,提出了商品候选属性集的5类分类特征,选择进化算法对分类特征集进行优化,研究基于机器学习的商品本体细粒度语义知识获取方法。通过SVM算法执行分类实验,结果证明了5类特征集的有效性。所提出的5类特征集对于其他领域具有一定的通用性,获取细粒度语义知识也有助于构建商品细粒度语义知识库,满足电子商务应用中对细粒度商品知识的需求。 When applied to E -commerce domain, the present commodity ontology model has two problems: the granularity of ontology model being too coarse and its fine - granularity semantic knowledge being too scarce. So five types of classification characters were proposed from commodity's candidate attributes. An evolutionary algorithm was chosen to optimize the classifica- tion character set. And a method to gain fine - granularity semantic knowledge was studied using supervised learning methods. The classification experiments proved the validity of the five types of character set with SVM algorithms. The proposed classifica- tion characters have a certain commonality in other areas, and the method can help to build fine - granularity semantic knowledge base of commodity, which can meet the needs of fine -granularity commodity knowledge in E -commerce field.
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2013年第5期706-709,753,共5页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 教育部人文社科基金资助项目(10YJC870007 09YJA630124) 中央高校基本科研业务专项资金资助项目(2013-IV-013)
关键词 商品本体 语义知识 细粒度 分类特征 机器学习 commodity ontology semantic knowledge fine - granularity classification characters machine learning
  • 相关文献

参考文献15

  • 1杜小勇,李曼,王珊.本体学习研究综述[J].软件学报,2006,17(9):1837-1847. 被引量:242
  • 2刘丹,谢庆生,顾新建.电子商务环境下产品本体构建技术研究[J].计算机应用,2007,27(3):752-755. 被引量:11
  • 3HEPP M. Products and services ontologies: a methodol- ogy for deriving owl ontologies from industrial categori- zation standards [ J ]. International Journal on Semantic Web and Information Systems, 2006,2( 1 ) :72-99.
  • 4LEE T, LEE I, LEE S, et al. Building an operational product ontology system [ J ]. Electronic Commerce Re- search and Applications, 2006,5( 1 ) :16- 28.
  • 5LEE H, SHIM J, KIM D. Ontological modeling of e - catalogs using EER and description logics [ C ]//Inter- national Workshop on Data Engineering Issues in E - Commerce, IEEE. [ S. l. ]: [ s. n. ], 2005:125 - 131.
  • 6KIM W, CHOI D, PARK S. Product information meta -search framework for electronic commerce through ontology mapping[C]//The Semantic Web : Research and Applications. [ S. l. ] : [ s. n. ], 2005 : 127 - 132.
  • 7VEGETFI M, HENNING G P, LEONE H P. A PDM system for the derivation of products with complex structure in process industries[ C ]//Proceedings of the 33 JAIIO. [S. l.]:[s.n.], 2004:1-10.
  • 8RAYMOND L Y K. Fuzzy domain ontology discovery for business knowledge management[J]. IEEE Intelli- gent Informatics Bulletin, 2007,8( 1 ) :29 -41.
  • 9MATTHEW B, CHARNIAK E. Finding parts in very large corpora [ C ] ///Proceedings of the 37th Annual Meeting of the Association for Computational Linguis- tics on Computational Linguistics. [ S. l. ] : [ s. n. ], 1999:57 - 64.
  • 10POESIO M, ALMUHAREB A. Identifying concept attributes using a classifier [ C ]//Proceedings of the ACL- SIGLEX Workshop on Deep Lexical Acquisition, Association for Computational Linguistics. [S.l.]:[s.n.], 2005:18-27.

二级参考文献43

共引文献255

同被引文献3

  • 1杜小勇,李曼,王珊.本体学习研究综述[J].软件学报,2006,17(9):1837-1847. 被引量:242
  • 2Sharmin Moosavi,Mohammadali Nematbakhsh,Hadi Khosravi Farsani.A semantic complement to enhance electronic market[J].Expert Systems With Applications.2008(3)
  • 3Martin Hepp.Products and Services Ontologies: A Methodology for Deriving OWL Ontologies from Industrial Categorization Standards[J].International Journal on Semantic Web and Information Systems (IJSWIS).2006(1)

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部