期刊文献+

炉前作业对高炉炉缸侧壁剪切应力的影响 被引量:5

Influence of tapping operation on wall shear stress in a blast furnace hearth
下载PDF
导出
摘要 采用数值模拟方法对不同出铁操作条件下炉缸内铁水流动特征进行了定量解析,考察了出铁操作,包括铁口深度、铁口倾角及铁口直径对铁水环流诱导剪切应力沿炉缸圆周方向及纵向分布规律的影响。结果表明,在与铁口夹角0°~20°周向炉缸区域,侧壁剪切应力值较大,炉缸侧壁最大剪切应力出现在铁1:7平面以下约1.5m处;随铁1:7深度增加,侧壁剪切应力减小,且最大剪切应力出现位置下移;铁口倾角对侧壁最大剪切应力出现位置无明显影响,而铁口直径增加则侧壁剪切应力明显增大。对宝钢3号高炉而言,最佳铁口倾角约为13°,铁口直径以不超过130mm为宜。 A numerical simulation method was used to make a quantitative analysis on the flow characteristics of hot metal in the blast furnace hearth. The influences of tapping operation, including the taphole length, angle and diameter, on the distribution of shear stress on the sidewall along the circumferential and vertical direction were studied. The calculated results showed that the shear stress on the sidewall was higher around the circumferential area with an included angle between 0° to 20° to the taphole and the maximum shear stress appeared at the position about 1.5 m below the taphole level. The peak value of shear stress on the sidewall decreased with the increase of the taphole length, and the position of the maximum shear stress moved down. The taphole angle had no obvious effects on the position of the maximum shear stress, and sidewall shear stress increased obviously with the increase of the taphole diameter. For the No. 3 blast furnace of Baosteel, the optimum taphole angle is about 13°, and the proper taphole diameter should not exceed 130 mm.
作者 林成城 王楠
出处 《宝钢技术》 CAS 2013年第5期1-7,共7页 Baosteel Technology
关键词 高炉炉缸 侧壁剪切应力 铁口深度 铁口倾角 铁口直径 blast furnace hearth sidewall shear stress taphole length taphole angle taphole diameter
  • 相关文献

参考文献9

  • 1傅世敏.高炉炉缸内铁水环流与内衬侵蚀[J].炼铁,1995,14(4):8-11. 被引量:10
  • 2Desai B, Ramna R V, Dash S K. Optimum coke-free space volume in blast furnace hearth by wall shear stress analysis[ J]. ISIJ International,2006,46 (10) : 1396 - 1402.
  • 3Chang C M, Cheng W T, Huang C E, et al. Numerical prediction on the erosion in the hearth of a blast furnace during tapping process [ J ]. International Communication in Heat and Mass Transfer,2009,369(5 ) :480 -490.
  • 4Preuer A, Winter J, Hiebler H. Computation of the iron flow in the hearth of a blast furnace [ J ]. Steel Research, 1992,63 (4) : 139.
  • 5Preuer A, Winter J, Hiebler H. Computation of the erosion in the hearth of a blast furnace [ J ]. Steel Research, 1992,63 (10) :147 -151.
  • 6Vats A K, Dash S K. Flow induced stress distribution on wall of blast furnace hearth [ J ]. Ironmaking & Steelmaking, 2000,27 (2) :123 -128.
  • 7Dash S K,Ajmani S K,Kumar A,et al. Optimum taphole length and flow induced stresses [ J ]. Ironmaking & Steelmaking, 2001,28(2) :110 - 116.
  • 8Dash S K,Jha D N, Ajmani S K. Optimisation of taphole angle to minimise flow induced wall shear stress on the hearth [ J ]. Ironmaking & Steelmaking,2004,31 ( 3 ) : 207 - 215.
  • 9Iwamasa P K, Caffery G A, Warnica W D, et at. Modeling of iron flow, heat transfer, and refractory wear in the hearth of an iron blast furnace [ C ]// International Conference on CFD in Mineral &Metal Processing and Power Generation. Melbourne: CSIRO, 1997:285 - 295.

二级参考文献1

共引文献9

同被引文献34

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部