期刊文献+

合成高级醇的微生物细胞工厂研究进展 被引量:1

Advance in producing higher alcohols by microbial cell factories
原文传递
导出
摘要 高级醇疏水性好,能量密度高,能与汽油随意混合;用微生物发酵可再生材料生产高级醇燃料替代矿物燃料是发展趋势。文中综述了构建合成高级醇的酿酒酵母和大肠杆菌细胞工厂的研究和相关技术平台。重点介绍了依赖CoA的梭菌途径和α-酮酸介导的非发酵途径的构建,分析了各自的特点,总结了生产高级醇的微生物细胞工厂的构建策略;提出高级醇工业化生产要解决的问题和研究方向。 Higher alcohols have a high energy density, low hygroscopicity and can be mixed with gasoline at any ratio. It is the trend to?replace?fossil fuels with biofuels produced via microbial fermentation of renewable resources. We reviewed the progress in the development of engineered Saccharomyces cerevisiae and Escherichia coli that can produce higher alcohols, as well as the related technology platforms. We mainly focused on the construction of CoA-dependent pathways and α-keto acid mediated non-fermentative pathways, analyzed their respective characteristics, and summarized the construction strategies. The problems to be solved and future research direction were also discussed.
出处 《生物工程学报》 CAS CSCD 北大核心 2013年第10期1421-1430,共10页 Chinese Journal of Biotechnology
基金 河北省留学人员科技活动择优资助项目(No.2011-226) 河北省高等学校科学研究计划项目(No.ZH2012056) 河北经贸大学校级重点发展学科支持项目资助~~
关键词 高级醇 Α-酮酸 氨基酸代谢 系统代谢工程 higher alcohols α-keto acid amino acid metabolism system metabolic engineering
  • 相关文献

参考文献52

  • 1Lee JW, Na D, Park JM, et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chern Bioi, 2012, 8(6): 536-546.
  • 2Steen EJ, Chan R, Prasad N, et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact, 2008, 7(1): 36-43.
  • 3Koffas MA. Expanding the repertoire of biofuel alternatives through metabolic pathway evolution. Proc Natl Acad Sci USA, 2009, 106(4): 965-966.
  • 4Dunlop MJ. Engineering microbes for tolerance to next generation biofuels. Biotechnol Biofuels, 2011,4: 32.
  • 5Liu P, Jarboe LR. Metabolic engineering of biocatalysts for carboxylic acids production. Comput Struct Biotechnol J, 2012, 3(4): e20 121 00 11.
  • 6Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Bioi Rev, 2008, 72(3): 379-412.
  • 7Lee SJ, Lee SJ, Lee DW. Design and development of synthetic microbial platform cells for bioenergy. Front Microbiol, 2013, 4: 92.
  • 8Feng X, Mouttaki H, Lin L, et al. Characterization of the central metabolic pathways in Thermoanaerobacter sp. strain X514 via isotopomer-assisted metabolite analysis. Appl Environ Microbiol, 2009, 75(15): 5001-5008.
  • 9Chen X, Nielsen KF, Borodina I, et al. Increased isobutanol production in S. cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels, 2011, 4: 21.
  • 10Martin C, Marcet M, Almazan 0, et al. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour Technol, 2007, 98(9): 1767-1773.

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部