期刊文献+

糠醛和5-羟甲基糠醛对大肠杆菌产丁二酸的影响 被引量:3

Effects of furfural and 5-hydroxymethylfurfural on succinic acid production by Escherichia coli
原文传递
导出
摘要 利用可再生生物质特别是木质纤维素水解液来生产平台化合物丁二酸,是目前研究的热点。虽然许多研究者相继报道了木质纤维素水解液对菌株生长和丁二酸生产存在一定抑制作用,但并没有水解液中各种抑制物对菌株影响的相关动力学研究及机理研究。我们选择了两种代表性木质纤维素水解液抑制物,即糠醛和5-羟甲基糠醛,系统研究了它们对大肠杆菌的生长和丁二酸生产的影响。结果表明:糠醛和5-羟甲基糠醛的初始抑制浓度均为0.8 g/L。当糠醛浓度大于6.4 g/L,5-羟甲基糠醛浓度大于12.8 g/L时,菌株生长完全受到抑制。在最高耐受浓度下,糠醛的存在使菌株生物量比对照菌株下降77.8%,丁二酸产量下降36.1%。5-羟甲基糠醛的存在使菌株生物量比对照菌株降低13.6%,丁二酸产量降低18.3%。糠醛和5-羟甲基糠醛具有明显的协同作用。体外酶活测定表明丁二酸生产途径中关键酶磷酸烯醇式丙酮酸羧化酶、苹果酸脱氢酶、富马酸还原酶均受糠醛和5-羟甲基糠醛抑制。研究结果对丁二酸生产用纤维素水解液的预处理和脱毒工艺开发具有指导作用,有利于实现丁二酸发酵生产的工业化。 Succinic acid production by fermentation from biomass, especially the lignocellulosic hydrolysate, is an alternative to chemical synthesis. Many studies report the inhibition of cell growth and succinic acid production from lignocellulosic hydrolysate, hardly is known about the actual kinetic and mechanism of the inhibition of individual factors. In this study, we studied inhibition effects of furfurals and 5-hydroxymethylfurfural (5-HMF) on cell growth and succinic acid production of engineered E. coli. Cell growth and succinic acid titer were severely inhibited by furfural and HMF with both concentrations higher than 0.8 g/L. Cell growth was totally inhibited when the concentration of furfural was above 6.4 g/L, or the concentration of HMF was above 12.8 g/L. At the concentration of maximum toleration, which was 3.2 g/L, furfural decreased the cell mass by 77.8% and the succinic acid titer by 36.1%. HMF decreased the cell mass by 13.6% and the succinic acid titer by 18.3%. Activity measurements of key enzymes revealed that phosphoenolpyruvate carboxylase, malate dehydrogenase, fumarate reductase all were inhibited by furfural and HMF. This study gave a quantitative view to the succinic acid production under the inhibition of lignocellulose degradation products and will help overcome the difficulties of the lignocellulosic hydrolysate fermentation.
出处 《生物工程学报》 CAS CSCD 北大核心 2013年第10期1463-1472,共10页 Chinese Journal of Biotechnology
基金 国家自然科学基金(No.21106191) 重庆市自然科学基金(No.cstcjjA50002) 国家高技术研究发展计划(863计划)(Nos.2011AA02A203 2012AA022301) 中国科学院知识创新工程重要方向项目(No.KSCX2-EW-G-2) 中央高校基本科研业务费(No.CQDXWL-2013-019)资助~~
关键词 水解液 大肠杆菌 丁二酸 抑制物 糠醛 lignocellulosic hydrolysate Escherichia coli succinate inhibitor furfural
  • 相关文献

参考文献26

  • 1Song H, Lee SY. Production of succinic acid by bacterial fermentation. Enzyme Microbiol Technol, 2006,39: 352-361.
  • 2Wang D, Li Q, Song Z, et al. High cell density fermentation via a metabolically engineered Escherichia coli for the enhanced production of succinic acid. J Chern Technol Biotechnol, 2011, 86: 512-518.
  • 3Zheng P, Dong J, Sun Z, et al. Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresour Technol,2009,100:2425-2429.
  • 4McKinlay JB, Vieille C, Zeikus JG. Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol, 2007, 76: 727-740.
  • 5Samuelov NS, Lamed R, Lowe S, et al. Influence of COz-HCOrlevels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens. Appl Environ Microbiol, 1991,57: 3013-3019.
  • 6Van der Werf MJ, Guettler MV, Jain MK, et al.ronmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. l30Z. Arch Microbiol, 1997, 167: 332-342.
  • 7Lee PC, Lee SY, Hong SH, et al. Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl Microbiol Biotechnol, 2002, 58: 663-668.
  • 8Lee SJ, Song H, Lee SY. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol, 2006, 72: 1939-1948.
  • 9Chatterjee R, Millard CS, Champion K, et al. Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microb, 2001, 67: 148-154.
  • 10Zhang X, Jantama K, Moore JC, et al. Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc Natl Acad Sci USA, 2009,106: 20180-20185.

同被引文献38

  • 1Lin C S, Luque R, Clark J H, et al. Wheat-based biore- fining strategy for fermentative production and chemical transformations of succinic acid[J]. Biofuels Bioproducts & Biorefining-Biofpr, 20i2, 6( 1 ) : 88 - 104.
  • 2Wang D, Li Q, Yang M I-I, et al. Efficient production of succinic acid from corn stalk hydrolysates by a recombi- nant Escherichia coli with ptsG mutation[ J]. Process Bi- ochemistry, 2011, 46 ( 1 ) : 365 - 371.
  • 3Li J, Zherg X Y, Fang X J, et al. A complete industrial system for economical succinic acid production by Acti- nobacillus succinogenes [ J ]. Bioresource Technology, 2011, 102(10) : 6147 -6152.
  • 4Borges E R, Pereira N. Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by Actinoba- cillus succinogenes[ J]. Journal of Industrial Microbiolo- $3 & Biotechnology, 2011, 38(8) : 1001 - 1011.
  • 5Chen K Q, Li J, Ma J F, et al. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber [ J]. Bioresource Technology, 2011, 102(2) : 1704 - 1708.
  • 6Li Q, Yang M, Wang D, et al. Efficient conversion of crop stalk wastes into succinic acid production by Acti- nobacillus succinogenes [ J ]. Bioresource Technology,2010, 101(9): 3292-3294.
  • 7Wu D, Li Q, Wang D, et al. Enzymatic hydrolysis and suecinic acid fermentation from steam-exploded corn stalk at high solid concentration by recombinant Escheriehia eo- li [ J]. Applied Biochemistry and Biotechnology, 2013, 170(8) : 1942 - 1949.
  • 8Wang X, Yomano L P, Lee 3 Y, et al. Engineering fur- fural tolerance in Escherichia coli improves the fermenta- tion of lignocellulosic sugars into renewable chemicals [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110 (10): 4021 - 4026.
  • 9Chen K, Jiang M, Wei P, et al. Succinic acid produc- tion from acid hydrolysate of corn fiber by Actinobacillus succinogenes[ J]. Applied Biochemistry and Biotechnol- ogy, 2010, 160(2) : 477 -485.
  • 10Zhou W, Yang M, Wang C, et al. Changes in plant cell-wall structure of corn stover due to hot compressed water pretreatment and enhanced enzymatic hydrolysis [ J ]. World Journal of Microbiology & Biotechnology, 2014, 30(8) : 2325 -2333.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部